Evaluation of Affecting Factors on Formation of Oil-Mineral Aggregates for Stranded Oil on Intertidal Flat

연안 조간대에 표착한 유출유의 OMA 형성 영향인자의 평가

  • Cheong, Cheong-Jo (Department of Environmental Engineering, Sunchon National University)
  • 정정조 (순천대학교 환경공학과)
  • Received : 2009.04.20
  • Accepted : 2009.08.17
  • Published : 2009.08.25

Abstract

The purpose of this study is to evaluate the affecting factors on Oil-Mineral Aggregates(OMA) for stranded oil on intertidal flat, because the OMA formation enhances the oil dispersion and biodegradation rates. We choose the affecting factors such as spilled oil concentrations(50, 100, 200, 300, 400, 500 mg/L), mineral concentration(100, 200, 500, 1,000, 2,000, 4,000 mg/L), salinity(10, 20, 30, 40 psu), shaking time(1, 2, 4, 8, 12, 24 hr) and applied dispersant volume(0, 5, 10, 15, 20%). Major conclusions derived from this study are as follows. It was observed that the kaolinite interacts three times strongly with crude oil than quartz. OMA formation was enhanced with increasing of spilled oil concentrations, whereas the increase of salinity rarely affected the OMA formation. The shaking time for OMA formation affected positively with kaolinite, but quartz was irrespective the shaking time. The applied dispersant enhanced the OMA formation by 13% in kaolinite and 56% in quartz experimental condition.

OMA(Oil-Mineral Aggregates) 형성은 유출유의 분산이나 미생물 분해율을 증대시켜 유출유의 제거에 많은 기여를 할 수 있기 때문에 연안 조간대에 표착된 유출유와 자연친화적인 OMA의 영향인자를 평가하는 것을 목적으로 유출유의 농도(50, 100, 200, 300, 400, 500 mg/L), 미세토립자의 농도(100, 200, 500, 1,000, 2,000, 4,000 mg/L), 염분 농도(10, 20, 30, 40 psu), 교반시간(1, 2, 4, 8, 12, 24 hr), 유화분산제의 주입량(0, 5, 10, 15, 20%)과 같은 물리화학적 인자의 변화를 통해 연구를 수행하여, 다음과 같은 결론을 얻었다. 점토광물인 Kaolinite가 비점토광물인 Quartz보다 유출유와의 합체물인 OMA의 형성에 약 3배 이상의 효율을 갖고 있는 것으로 파악되었다. OMA 형성인자들 중에서 기름의 유출량이 많을수록 OMA의 형성이 증대되는 것으로 검증되었으며, 해양의 염분농도 조건에서는 염분농도가 OMA의 형성에 영향을 미치지 않는 것으로 파악되었다. 그리고 교반시간이 증가하면 점토광물인 Kaolinite의 경우는 OMA의 형성에 긍정적인 역할을 하였나, Quartz의 경우는 커다란 영향을 미치지 못하는 것으로 파악되었다. 살포된 유화분산제가 Kaolinite와의 OMA의 형성에는 약 13%정도 기여한 것으로 파악되었으며, Quartz와의 경우는 약 56%가 촉진 되는 것으로 파악되었다.

Keywords

References

  1. 정정조, 2008, "유출된 기름의 해상 및 해안에서의 거동 및 방제기술", 대한환경공학회지, 30권, 2호, 136-145.
  2. Floch, S. L., Guyomarch, J., Merlin, F.-X., Stoffyn-Egli, P., Dixon, J. and Lee, K., 2002, "The influence of salinity on oilmineral aggregate formation", Spill Science & Technology Bulletin, Vol. 8, 65-71. https://doi.org/10.1016/S1353-2561(02)00124-X
  3. Friberg, S., 1976, "Emulsion stability", In: Frieberg, S. (Ed.), Food Emulsions. Marcel Dekker Inc., UK, 1-37.
  4. Guyomarch, J., Floch, S. L. and Merlin, F.-X., 2002, "Effect of suspended mineral load, water salinity and oil type on the size of oil-mineral aggregates in the presence of chemical dispersant", Spill Science & Technology Bulletin, Vol. 8, 95-100. https://doi.org/10.1016/S1353-2561(02)00118-4
  5. Harris, G. W. and Wells, P. G., 1979, "A laboratory study on the adhesion of crude oil to beach sand on the presence of a dispersant", Spill Technol. Newsletter. 4, 293-298.
  6. Kepkay, P. E., Bugden, J. B. C., Lee, K. and Stoffyn-Egli, P., 2002, "Application of ultraviolet fluorescence spectroscopy to monitor oil-mineral aggregate formation", Spill Science & Technology Bulletin, Vol. 8, 101-108. https://doi.org/10.1016/S1353-2561(02)00122-6
  7. Khelifa, A., Stoffyn-Egli, P., Hill, P. S. and Lee, K., 2002, "Characteristics of oil droplets stabilized by mineral particles : effects of oil type and temperature", Spill Science & Technology Bulletin, Vol. 8, 19-30. https://doi.org/10.1016/S1353-2561(02)00117-2
  8. Khelifa, A., Stoffyn-Egli, P., Hill, P. S. and Lee, K., 2005, "Effects of salinity and clay on oil-mineral aggregation", Marine Environmental Research Vol. 59, 235-254. https://doi.org/10.1016/j.marenvres.2004.05.003
  9. Lee, K., Weise, A. M. and St-Pierre, S., 1996, "Enhanced oil biodegradation with mineral fine interaction", Spill Science & Technology Bulletin, Vol. 3, 263-267. https://doi.org/10.1016/S1353-2561(97)00025-X
  10. Lee, K., Stoffyn-Egli, P. and Owens, E. H., 2002, "The OSSA II pipeline oil spill: Natunral mitigation of a riverine oil spill by oil-mineral aggregate formation", Spill Science & Technology Bulletin, Vol. 7, 149-154. https://doi.org/10.1016/S1353-2561(02)00056-7
  11. Lee, K., Stoffyn-Egli, P., Tremblay, G. H., Owens, E. H., Sergy, G. A., Guenette, C. C. and Prince, R. C., 2003, "Oil-Mineral aggregate formation on oiled beaches: Natural attenuation and sediment relocation", Spill Science & Technology Bulletin, Vol. 8, 285-296. https://doi.org/10.1016/S1353-2561(03)00042-2
  12. Muschenheim, D. K. and Lee, K., 2002, "Removal of oil from the sea surface through particulate interactions: review and prospectus", Spill Science & Technology Bulletin, Vol. 8, 9-18. https://doi.org/10.1016/S1353-2561(02)00129-9
  13. Omotoso, O. E., Munoz, V. A. and Mikula, R. J., 2002, "Mechanisms of crude oil-mineral interactions", Spill Science & Technology Bulletin, Vol. 8, 45-54. https://doi.org/10.1016/S1353-2561(02)00116-0
  14. Owens, E. H. and Lee, K., 2003, "Interaction of oil and mineral fines on shorelines: review and assessment", Marine Pollution Bulletin, Vol. 47, 397-405. https://doi.org/10.1016/S0025-326X(03)00209-1
  15. Payne, J. R., Clayton Jr, J. R. and Kirstein, B. E., 2003, "Oil/ Suspended particulate material interactions and sedimentation", Spill Science & Technology Bulletin, Vol. 8, 201-221. https://doi.org/10.1016/S1353-2561(03)00048-3
  16. Stoffyn-Egli, P. and Lee, K., 2002, "Formation and characterization of oil-mineral aggregates", Spill Science & Technology Bulletin, Vol. 8, 31-44. https://doi.org/10.1016/S1353-2561(02)00128-7