• Title/Summary/Keyword: 연속회분식실험

Search Result 139, Processing Time 0.034 seconds

Cr(VI) Removal from Artificial Groundwater by Granular Activated Carbon and Regeneration of the Spent Carbon (입상활성탄을 이용한 인공 조제 지하수내의 Cr(VI) 제거와 그 활성탄의 재생)

  • Ihnsup Han
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.11-31
    • /
    • 1999
  • Removal of hexavalent chromium from artificial groundwater (AGW) by granular activated carbon (GAC) was investigated in batch and continuous-flow column studies. Experimental parameters that were examined included solution pH, presence of dissolved oxygen (DO), and GAC pretreatment with Fe(II). As the solution pH increased from 4 to 7.5, the amount of Cr(VI) removed by both GACs decreased significantly. Exclusion of DO from the experimental systems resulted in greater removal of Cr(VI) from solution, possibly as a result of reduction to Cr(III). However, pretreatment of the GAC with a reductant (Fe(II)) did not improve Cr(VI) removal. Equilibration With 0.01 M $K_2$$HPO_4$[to extract adsorbed Cr(VI)] followed by a wash with 0.02 N $K_2$$HPO_4$[to remove precipitated/sorbed Cr(III)] proved to be a viable approach for the regeneration of carbons whose Cr(VI) removal capacities had been exhausted. The performance of the regenerated carbons exceeded that of the virgin carbons, primarily because of the favorable adsorption of Cr(VI) at lower pH values and the reduction of Cr(VI) to Cr(III), The presence of Cr(III) in acid wash solutions provides direct evidence that Cr(VI) is reduced to Cr(III) in GAC systems under relatively acidic conditions. GAC performance over five complete cycles was consistently high, which suggests that such a system will be able to function over many operation cycles without deleterious effects.

  • PDF

Removal of TNT Reduction Products via Oxidative-Coupling Reaction Using Manganese Oxide (망간산화물을 이용한 TNT 환원부산물의 산화-결합반응에 의한 제거 연구)

  • Kang, Ki-Hoon;Lim, Dong-Min;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.476-485
    • /
    • 2005
  • In this study, abiotic transformation of TNT reduction products via oxidative-coupling reaction was investigated using Mn oxide. In batch experiments, all the reduction products tested were completely transformed by birnessite, one of natural Mn oxides present in soil. Oxidative-coupling was the major transformation pathway, as confirmed by mass spectrometric analysis. Using observed pseudo-first-order rate constants with respect to birnessite loadings, surface area-normalized specific rate constants, $k_{surf}$, were determined. As expected, $k_{surf}$ of diaminonitrotoluenes (DATs) ($1.49{\sim}1.91\;L/m^2{\cdot}day$) are greater about 2 orders than that of dinitroaminotoluenes (DNTs) ($1.15{\times}10^{-2}{\sim}2.09{\times}10^{-2}\;L/m^2{\cdot}day$) due to the increased number of amine group. In addition, by comparing the value of $k_{surf}$ between DNTs or DATs, amino group on ortho position is likely to be more preferred for the oxidation by birnessite. Although cross-coupling of TNT in the presence of various mediator compounds was found not to be feasible, transformation of TNT by reduction using $Fe^0$ followed by oxidative coupling using Mn oxide was efficient, as evaluated by UV-visible spectrometry.

Effects of Regeneration Conditions on Sorption Capacity of CO2 Dry Potassium Sorbent During Carbonation (재생반응 조건이 CO2 건식 K-계열 흡수제의 흡수능력에 미치는 영향)

  • Kim, Yunseop;Park, Young Cheol;Jo, Sung-Ho;Ryu, Ho-Jung;Rhee, Young Woo;Yi, Chang-Keun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.333-338
    • /
    • 2015
  • In this study, we investigated carbonation-regeneration and agglomeration characteristics of dry sorbents. Experiment has been proceeded in the batch-type reactor, which is made of quartz: 0.05 m of I.D and 0.8 m in height. The sorbents that is collected at the cyclone of the carbonation reactor of continuous process were used in this study. The reactivity was studied at the various concentrations of water vapor, $N_2$ and $CO_2$ in the fluidizing gas at regeneration reaction. As a result, the reactivity increased as the regeneration temperature increased, the reactivity decreased as the concentration of water vapor increased. The absorption capacity showed the highest value in case of using $N_2$ 100% as regeneration gas. And decreased in order of $H_2O+N_2$, $CO_2$ 100% and $H_2O+CO_2$. The agglomeration characteristics were investigated according to the particle sizes and concentrations of water vapor at carbonation reaction. As a result, the particle with smaller size and higher concentration of water vapor showed the higher agglomeration characteristic.

The Effect of Fluidized-Bed Variables on Attrition of Solid Particles (유동층 공정변수의 고체입자 마모에 미치는 영향)

  • Moon, Young-Sub;Yi, Chang-Keun;Son, Jae-Ek;Ryu, Chung-Keol;Choi, Jeong-Hoo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.603-608
    • /
    • 2005
  • This study was conducted to investigate particle attrition characteristics in a gas desulfurization using zinc titanate sorbent in a 0.035 m i.d. by 1.34 m height gas fluidized bed reactor. Gas jetting from the distributor and bubbling in the gas fluidized bed were found to be the main causes of particle attrition. The experiment was carried out under a slow attrition rate condition to compare the performance of the batch reactor to that of a continuous reactor. The attrition index (AI) and corrected attrition index (CAI) were measured at various the gas velocity, temperature, pressure, and bed weight, in the gas fluidized bed, during the dexulfurization process. The AI (5) and CAI (5) decreased as the bed weight increased. Particle destruction occurred when the particles started to experience physical fatigue under specific impacts over several iterations. AI (5) and CAI (5) also increased as relative humidity, gas velocity and pressure increased, and as temperature decreased. Particle attrition was mainly affected by gas jetting from the distributor, and abrasion resulted in smaller particles than fragmentation did.

폐지 슬러지를 이용한 혐기성 메탄발효 특성 분석

  • Jo, Geon-Hyeong;Kim, Jung-Gon;Jeong, Hyo-Gi;Kim, Seong-Jun;Kim, Si-Uk
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.367-370
    • /
    • 2003
  • This study was carried out to investigate the possibility for reuse of solid organic wastes such as saccharified newspapers and boxes by two-phase anaerobic fermentation system. When 15g of newspaper and box wastes were digested for 24 days by batch fermentation, tCOD removal rate were found to be 60.9 and 62.4%, respectively. During this period, the amounts of biogas produced were 6.95 and 6.43L. The removal efficiencies of total solid were 34.8 and 33.4%, and those of volatile solid were 40.0 and 39.2%, respectively. That pH was around 7.5 after 20-days operation means methane fermentation is well advanced. In case of semicontinuous reaction, tCOD removal efficiencies of newspaper and box wastes were 64.7 and 65.0%, respectively for 14-days operation. It has been shown that each of the average biogas amounts produced after 25 days operation (stabilization stage for methane fermentation) was 0.31 and 0.30L/g dry wt./day, respectively, and each methane contents was 57.3 and 56.2%, respectively. After the reaction continued for 25 days, pHs in the anaerobic acidogenic and methanogenic fermenters were shown to be 5.0 and 7.5, respectively.

  • PDF

Biodegradation of VOC Mixtures using a Bioactive Foam Reactor II: Analysis of Microbial Community (계면활성제 미생물반응기의(혼합 VOCs) 생분해 II: 미생물의 군집해석)

  • Jang, Hyun Sup;Shin, Shoung Kyu;Song, Ji Hyeon;Hwang, Sun Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.695-701
    • /
    • 2006
  • A toluene-degrading bacterial strain was isolated from a mixed culture that was maintained using toluene as a sole carbon and energy source. The isolated bacterium was classified as Pseudomonas sp. TBD4 based on the close relationship to bacteria belonging to this genus. A bottle study to determine biodegradation rates of individual aromatic compounds showed that the biodegradation was faster in the order of toluene, benzene, styrene, and p-xylene. However, when various mixtures were subjected to TDB4, styrene was degraded at the highest rate, indicating that both toluene and p-xylene could stimulate the degradation of other substrates whereas styrene played as an inhibitor. In addition, the mixed culture and TDB4 were inoculated to the bioactive foam reactor (BFR), and the reactor performance and the corresponding change of microbial community were monitored using the fluorescent in situ hybridization (FISH) method. When an inlet concentration of the VOC mixture increased to greater than 250 ppm, the overall removal efficiency dropped significantly. The FISH measurement demonstrated that the ratio of TDB4 to the total bacteria also decreased to less than 20% along with the decline in removal efficiency in the BFR. As a result, the periodic addition of the pre-grown TDB4 might have been beneficial to achieve a stable performance in the BFR operated over an extended period.

The Alterations of Geochemical Behavior of Arsenic in Stabilized Soil by the Addition of Phosphate Fertilizer (인산질 비료에 의한 안정화 적용 토양 내 비소의 지구화학적 거동 변화)

  • Jeon, Yong-Jung;Kim, Bun-Jun;Ko, Ju-In;Ko, Myoung-Soo
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.209-217
    • /
    • 2022
  • The purpose of this study was to confirm the dissolution of arsenic from the stabilized soil around abandoned coal mines by cultivation activities. Experimental soils were collected from the agricultural field around Okdong and Buguk coal mines, and the concentration of arsenic in the soil and the geochemical mobility were confirmed. The average arsenic concentration was 20 mg/kg. The soil with relatively high geochemical mobility of arsenic in the soil was used in the batch and column experiment. The limestone was mixed with soil for soil stabilization, and the mixing ratio was 3% of limestone, based on the soil weight. The phosphoric acid fertilizer (NH4H2PO4) was added to the soil to simulate a cultivation condition according to the Rural Development Administration's rules. Comparative soil without mixing limestone was prepared and used as a control group. The arsenic extraction from soil was increased following the fertilizer mixing amount and it shows a positive relationship. The concentration of phosphate in the supernatant was relatively low under the condition of mixing limestone, which is determined to be result of binding precipitation of phosphate ions and calcium ions dissolved in limestone. Columns were set to mix phosphoric acid fertilizers and limestone corresponding to cultivation and stabilization conditions, and then the column test was conducted. The variations of arsenic extraction from the soil indicated that the stabilization was effectible until 10 P.V.; however, the stabilization effect of limestone decreased with time. Moreover, the geochemical mobility of arsenic has transformed by increasing the mobile fractions in soil compared to initial soil. Therefore, based on the arsenic extraction results, the cultivation activities using phosphoric fertilizer could induce a decrease in the stabilization effect.

Removal of Phthalate Esters in Advanced Water Treatment Unit Processes (고도정수처리단위공정에서 Phthalate Esters의 제거)

  • Hong, Sung-Hee;Han, Gae-Hee;Lee, Chan-Hyung;Lee, Shun-Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.461-467
    • /
    • 2005
  • Phthalate esters is recently considered as an environmental pollutant. This study investigated removal methods of phthalate esters in water environment. On tap water treatment condition with batch test, removal efficiency of coagulation precipitation of one oxidation were $26.6{\sim}33.8%$ and $10{\sim}15%$, respectively. Phthalate esters was effectively removed by the activated carbon adsorption process on tap water treatment condition. The operation of raw water with EBCT of 10 minutes on continuous process satisfied the standard of drinking water by the WHO and US EPA when the concentration of phthalate esters was $100\;{\mu}g/L$. On pilot plant test, coagulation precipitation process got $32{\sim}44%$ of removal efficiency, sand filtration process $6{\sim}10%$ and ozone oxidation process $8{\sim}10%$, respectively. DEP, DBP, BBP and DEHP were not detected after the raw water was processed with activated carbon. The actual survey of phthalate esters removal by advanced water treatment showed that $29{\sim}76%$, $3{\sim}29%$ and $17{\sim}22%$ of phthalate esters were removed on coagulation precipitation process, sand filtration and ozone oxidation process, respectively. DEP, DBP, BBP and DEHP were not detected after the raw water was processed with activated carbon.

A Study on the Application of Manganese Oxidizing Bacteria for Manganese Treatment in Acid Mine Drainage (산성광산배수의 망간처리를 위한 MOB 적용에 관한 연구)

  • Lee, Kang Yu;Jang, Min;Park, In Gun;Um, Tae Young;Lim, Kyeong Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.564-570
    • /
    • 2013
  • Domestic treatment facilities for acid mine drainage (AMD) mostly used a passive treatment process. But some passive treatment facility discharged high manganese concentrations because it is required high pH (>9) for abiotic oxidation of Mn(II) to Mn(IV). This study was focused on the feasibility of biological manganese treatment using the manganese-oxidizing bacteria (Pseudomonas sp. MN5) from AMD and economical application method of it. To investigate the various conditions of water quality the most part of the experiments were based on batch test. And result of it showed that maximum manganese oxidation rate were $10.4mg/L{\cdot}h$ at the pH7. We also performed small column tests in which MOB were attached to the functional polyurethane (FPU) media containing alkaline chemicals. Manganese concentration decreased 42 mg/L to below 6 mg/L. But anaerobic condition formed by excessive bacterial respiration in column resulted in increasing effluent manganese concentration.

Fermentative Water Purification based on Bio-hydrogen (생물학적 수소 발효를 통한 수처리 시스템)

  • Lee, Jung-Yeol;Chen, Xue-Jiao;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.926-931
    • /
    • 2011
  • Among various techniques for hydrogen production from organic wastewater, a dark fermentation is considered to be the most feasible process due to the rapid hydrogen production rate. However, the main drawback of it is the low hydrogen production yield due to intermediate products such as organic acids. To improve the hydrogen production yield, a co-culture system of dark and photo fermentation bacteria was applied to this research. The maximum specific growth rate of R. sphaeroides was determined to be $2.93h^{-1}$ when acetic acid was used as a carbon source. It was quite high compared to that of using a mixture of volatile fatty acids (VFAs). Acetic acid was the most attractive to the cell growth of R. sphaeroides, however, not less efficient in the hydrogen production. In the co-culture system with glucose, hydrogen could be steadily produced without any lag-phase. There were distinguishable inflection points in the accumulation of hydrogen production graph that resulted from the dynamic production of VFAs or consumption of it by the interaction between the dark and photo fermentation bacteria. Lastly, the hydrogen production rate of a repeated fed-batch run was $15.9mL-H_2/L/h$, which was achievable in the sustainable hydrogen production.