Browse > Article

Removal of TNT Reduction Products via Oxidative-Coupling Reaction Using Manganese Oxide  

Kang, Ki-Hoon (Technology Research Institute, Daelim Industrial Co., Ltd.)
Lim, Dong-Min (Department of Environmental Engineering, Seoul National University of Technology)
Shin, Hyun-Sang (Department of Environmental Engineering, Seoul National University of Technology)
Publication Information
Abstract
In this study, abiotic transformation of TNT reduction products via oxidative-coupling reaction was investigated using Mn oxide. In batch experiments, all the reduction products tested were completely transformed by birnessite, one of natural Mn oxides present in soil. Oxidative-coupling was the major transformation pathway, as confirmed by mass spectrometric analysis. Using observed pseudo-first-order rate constants with respect to birnessite loadings, surface area-normalized specific rate constants, $k_{surf}$, were determined. As expected, $k_{surf}$ of diaminonitrotoluenes (DATs) ($1.49{\sim}1.91\;L/m^2{\cdot}day$) are greater about 2 orders than that of dinitroaminotoluenes (DNTs) ($1.15{\times}10^{-2}{\sim}2.09{\times}10^{-2}\;L/m^2{\cdot}day$) due to the increased number of amine group. In addition, by comparing the value of $k_{surf}$ between DNTs or DATs, amino group on ortho position is likely to be more preferred for the oxidation by birnessite. Although cross-coupling of TNT in the presence of various mediator compounds was found not to be feasible, transformation of TNT by reduction using $Fe^0$ followed by oxidative coupling using Mn oxide was efficient, as evaluated by UV-visible spectrometry.
Keywords
TNT; Oxidative-Coupling Reaction; Mn Oxide; Birnessite; $Fe^0$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rieger, P.-G. and Knackmuss, H.-J., 'Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related compounds in contaminated soil,' Biodegradation of Nitroaromatic Compounds, Spain, J. C., (Ed.), Plenum Press, New York, pp. 1-18(1995)
2 Venkatadri, R. and Peters, R. W., 'Chemical oxidation technologies: ultraviolet light/hydrogen peroxide, Fenton's reagent, and titanium dioxide-assisted photocatalysis,' Hazard. Waste Hazard. Mater., 2, 107-149(1993)
3 Shindo, H. and Huang, P. M., 'Significance of Mn(IV) oxide in abiotic formation of organic nitrogen complexes in natural environments,' Nature (London), 308, 57 - 58(1984)   DOI   ScienceOn
4 Roberts, T., 'Non-extractable pesticide residues in soils and plants,' Pure Appl. Chem., 56, 945 -956(1984)   DOI   ScienceOn
5 Dec, J., Haider, K., Benesi, A., Rangaswamy, V., Schaffer, A., Plucken, U., and Bollag, J.-M., 'Analysis of soil-bound residues of 13C-labeled fungicide cyprodinil by NMR spectroscopy,' Environ. Sci. Technol., 31, 1128 - 1135(1997)   DOI   ScienceOn
6 Wang, M. C. and Huang, P. M., 'Significance of Mn (IV) oxide in the abiotic ring cleavage of pyrogallol in natural environments,' Sci. Total Environ., 113, 147 -157 (1992)   DOI   ScienceOn
7 Weber, Jr., W. J. and Huang Q., 'Inclusion of persistent organic pollutants in humification processes: direct chemical incorporation of phenanthrene via oxidative coupling,' Environ. Sci. Technol., 37, 4221-4227(2003)   DOI   ScienceOn
8 Pennington, J. C., Hayes, C. A., Meyers, K. F., Ocham, M., Gunnison, D., Felt, D. R., and McCormick, E. F., 'Fate of 2,4,6-trinitrotoluene in a simulated compost system,' Chemosphere, 30, 429 - 438(1995)   DOI   ScienceOn
9 Majcher, E. H., Chorover, J., Bollag, J.-M., and Huang, P. M. 'Evolution of C02 during birnessite-induced oxidation of $^{14}$C-labeled catechol,' Soil Sci. Soc. Am. J, 64, 157 - 63(2000)   DOI   ScienceOn
10 Kang, K.-H., Dec, J., Park, H., and Bollag, J.-M., 'Transformation of the fungicide cyprodinil by a laccase of Trametes villosa in the presence of phenolic mediators and humic acid,' Water Res., 36, 4907-4915(2002)   DOI   ScienceOn
11 Dec, J. and Bollag, J.-M., 'Dehalogenation of chlorinated phenols during oxidative coupling,' Environ. Sci. Technol., 28, 484-490(1994)   DOI   ScienceOn
12 McKenzie, R. M., 'The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese,' Miner. Mag., 38, 493 - 502(1971)   DOI
13 Roberts, D. K., Kaake, R. H., Funk, S. B., Crewford, D. L., and Crawford, R. L., 'Field-scale anaerobic bioremediation of dinoseb-contaminated soils,' Biotreatment of Industrial and Hazardous Wastes, Levin, M. A., and Gealt, M. A. (Eds.), McGraw-Hill, New York, pp. 219-244(1993)
14 Pennington, J. C. and Patrick, W. H., Jr., 'Adsorption and desorption of 2,4,6-trinitrotoluene by soils,' J Environ. Qual., 19, 559-567(1990)   DOI
15 Shindo, H. and Huang, P. M., 'Role of Mn(lV) oxide in abiotic formation of humic substances in the environment,' Nature (London), 298, 363 - 365(1982)   DOI
16 Arienzo, M., 'Oxidizing 2,4,6-trinitrotoluene with pyrite-$H_2O_2$ suspensions,' Chemosphere, 39, 1629-1638(1999)   DOI   ScienceOn
17 Kang, K.-H., Dec, J., Park, H., and Bollag, J.-M., 'Effect of phenolic mediators and humic acid on cyprodinil transformation in the presence of birnessite,' Water Res., 38, 2737-2745(2004)   DOI   ScienceOn
18 Stevenson, F. J., Humus Chemistry, John Wiley and Sons Inc., New York, pp. 303 - 324(1994)
19 Zappi, M. E., Miller, J., Toro, E., Cerar, R., and O'Donnell, R., HSRC-WERC, Joint Conference on the Environment, Abstracts Book, Albuquerque, New Mexico, May 21-3, pp. 13-14(1996)
20 Agrawal, A. and Tratnyek, P. G., 'Reduction of nitro aromatic compounds by zero-valent iron metal,' Environ. Sci. Technol., 30, 153 -160(1996)   DOI   ScienceOn
21 Silverstein, R. M., Webster, F. X., Spectrometric Identification of Organic Compounds, 6th Ed., John Wiley & Sons(1997)
22 McBride, M. B., 'Oxidation of 1,2- and 1,4-dihydroxybenzene by birnessite in acidic aqueous suspension,' Clays Clay Miner., 37, 479-486(1989)   DOI   ScienceOn
23 Call, H. and Mucke, I., 'History, overview and application of mediated lignolytic systems, especially laccasemediator systems (Lignozyms-Process),' J Biotechnol., 53, 163-202(1997)   DOI   ScienceOn
24 Hundal, L. S., Singh, J., Bier, E. L., Shea, P. J., Comfort, S. D., and Powers, W. L., 'Removal of TNT and RDX from water and soil using iron metal,' Environ. Pollut., 97, 55-64(1997)   DOI   ScienceOn
25 Bollag, J.-M., 'Decontaminating soil with enzymes: An in situ method using phenolic and anilinic compounds,' Environ. Sci. Technol., 26, 1876-1881(1992)   DOI
26 Stone, A. T. and Morgan, J. J., 'Reduction and dissolution of manganese(III) and manganese(IV) oxides by organics. I. Reaction with hydroquinone,' Environ. Sci. Technol., 18, 450-456(1984)   DOI   ScienceOn
27 Funk, S. B., Crawford, D. L., Crawford, R. L., Mead, G., and Davis-Hoover, W., 'Full scale anaerobic bioremediation of trinitrotoluene (TNT) contaminated soil. A US EPA SITE program demonstration,' Appl. Environ. Microbiol., 51, 625-633(1995)
28 Dec, J., Haider, K., and Bollag, J.-M., 'Release of substituents from phenolic compounds during oxidative coupling reactions,' Chemosphere, 52, 549 - 56(2003)   DOI   ScienceOn
29 Thorn, K. A., Pettigrew, P. J., Golbenberg, W. S., and Weber, E. J., 'Covalent binding of aniline to humic substances. 2. $^{15}N$ NMR studies of nucleophilic addition reactions,' Environ. Sci. Technol., 30, 2764 - 2775(1996)   DOI   ScienceOn
30 Pizzigallo, M. D. R., Ruggiero, P., Crecchio, C., and ininni, R., 'Manganese and iron oxides as reactants for oxidation of chlorophenols,' Soil Sci. Soc. Am. J, 59, 444 - 452(1995)   DOI   ScienceOn