• Title/Summary/Keyword: 연속지진하중

Search Result 40, Processing Time 0.023 seconds

Response Analysis of RC Bridge Piers due In Multiple Earthquakes (연속지진하중에 의한 철근콘크리트 교량 교각의 응답해석)

  • Lee Do-Hyung;Jeon Jong-Su;Park Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.357-367
    • /
    • 2004
  • In this paper, the effect of cumulative damage for reinforced concrete bridge piers subjected to both single and multiple earthquakes is investigated. For this purpose, selected are three set of accelerograms one of which represents the real successive input ground motions, recorded at the same station with three months time interval. The analytical predictions indicate that piers are in general subjected to a large number of inelastic cycles and increased ductility demand due to multiple earthquakes, and hence more damage in terms of stiffness degradation is expected to occur. In addition, displacement ductility demand demonstrates that inelastic seismic response of piers can significantly be affected by the applied input ground motion characteristics. Also evaluated is the effect of multiple earthquakes on the response with shear. Comparative studies between the cases with and without shear indicate that stiffness degradation and hence reduction in energy dissipation capacity of piers are pronounced due to the multiple earthquakes combined with shear. It is thus concluded that the effect of multiple earthquakes should be taken into account for the stability assessment of reinforced concrete bridge piers.

Study on the Rational Analysis Methods and Seismic Responses of Curved Bridges (곡선교의 합리적인 지진해석기법 및 지진응답특성에 관한 연구)

  • Kim, Sang Hyo;Cho, Kwang Il;Park, Byung Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.955-963
    • /
    • 2006
  • As the geometrical characteristic of the curved bridge, the seismic response of curved bridges are different from straight bridges. This study analyzed the seismic response of the curved bridges considering diverse factors such as radius of curvature, direction of seismic load and support condition. The improved simple modeling of the curved bridge for seismic analysis is proposed, and it is compared with the detail modeling in order to verify the simple modeling. Three simply supported curved bridges and six 3-span continuous bridges are selected for seismic analysis. The behavior of curved bridges are evaluated in terms of the displacement and the force at supports and piers under seismic load applied in various directions. The results of this study show that upward reaction force may appear in simply supported curved bridge under seismic load. And continuous curved bridges are affected by the direction of the seismic load.

Seismic Behavior of a Five-story RC Structure Retrofitted with Buckling-Restrained Braces Using Time-dependent Elements (시간종속요소를 이용한 5층 RC건축물의 비좌굴가새 보강에 대한 내진거동)

  • Shin, Ji-Uk;Lee, Ki-Hak;Lee, Do-Hyung;Jeong, Seong-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.11-21
    • /
    • 2010
  • This study presents seismic responses of 5-story reinforced concrete structures retrofitted with the buckling-restrained braces using a time-dependent element. The time-dependent element having birth and death times can freely be activated within the user defined time intervals during the time history analysis. The buckling-restrained brace that showed the largest energy dissipation capacity among the test specimens in previous research was used for retrofitting the RC buildings in this study. It was assumed that the first story of the damaged building under the first earthquake was retrofitted with the buckling-restrained braces considered as the time-dependent element before the second of the successive earthquakes occurs. Under this assumption, this paper compares seismic responses of the RC structures with the time-dependent element subjected to the successive earthquake. Subjected to the second earthquake, it was observed that activation of the BRB systems largely decreases deformation of the moment frame where the damage was concentrated under the first earthquake. However, damages to the shear wall systems were increased after activation of the BRB systems. Since the cumulative damages of the shear wall systems were infinitesimal compared with the retrofit effect of the moment frame, the BRB system was effective under the successive earthquake.

Long-Rails Stress Analysis of High-Speed Railway Continuous Bridges Subject to Operating Basis Earthquake (사용지진을 고려한 고속철도 연속교 장대레일의 응력 해석)

  • 김용길;권기준;고현무
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.5
    • /
    • pp.59-66
    • /
    • 2002
  • Long-rails in railways and high-speed railway are subjected to additional stresses resulted from the displacements inconsistence between upper structures, and this phenomenon is more remarkable in continuous bridges than in simple bridges. For the sake of safety, railways have to guarantee trains to stop safely without derailment even in the event of earthquake. The influences of acceleration, braking, and temperature were analyzed by static nonlinear method. But earthquake loads that require dynamic nonlinear analysis are not considered in these methods. Because linear relation between relative displacements of decks and rail stresses is not guaranteed at the nonlinear systems such as long rails on the bridges, it is required compute to rail stresses considering both braking and earthquake load by nonlinear dynamic analysis method. In this study, dynamic analysis method with material non-linearity for rails on continuous bridges according to the Taiwan High Speed Railway(THSR) Design Specification volume 9 was developed. And additional stresses and displacements of long rails for acceleration, braking, and earthquake loads were analyzed by this method.

Ductility Improvement of Square RC Columns by Using Continuous Spiral Stirrup (연속 횡방향철근 개발을 통한 사각기둥의 연성화)

  • Cho, Kyung Hun;Lee, Tae Hee;Lee, Jung Bin;Kim, Sung Bo;Kim, Jang Jay Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.149-156
    • /
    • 2023
  • Recently, concerns about natural disasters such as earthquakes, tsunamis and typhoons have increased. As the magnitude and frequency of earthquakes increase, research is needed to prevent structures from collapsing due to earthquake loads. Research is needed to increase the ductility of columns to prevent the collapse of structures. In this study, the ductility improvement of square columns achieved by applying spiral stirrups to square columns. Square columns reinforced with spiral stirrups are more resistant to repetitive loads such as seismic loads than columns reinforced with tie stirrups. Also, the spiral stirrups can apply better confinement to the concrete. In this study, an uniaxial compression test was conducted to evaluate the performance of columns reinforced with spiral stirrups. The results showed that the columns reinforced with spiral stirrups in both the circular and square columns showed higher compressive strength than the columns reinforced with the tie stirrups. In addition, the columns reinforced with spiral stirrups for both the square and circle columns, showed a tendency to endure the load even after the initial cracking and rebar yielding.

Seismic Protection for Multiple Span Continuous Steel Bridges using Shape Memory Alloy-Restrainer-Dampers (형상기억합금을 이용한 다경간 연속 강교량의 지진보호)

  • Park, Eunsoo;Kim, Haksoo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.77-86
    • /
    • 2004
  • This paper introduces a shape memory alloy-restrainer-damper(SMA-RD) to protect multiple span continuous steel bridges from seismic loads. The type of bridges has only one fixed bearing condition on a pier and expansion bearings are located on the other piers and abutments. Due to this state and a big mass of the deck, these bridges are usually very vulnerable to column's damage on which fixed bearings are located and large deformation of abutments in passive action. Two types of SMA-RDs are developed, and their effect is inspected for protecting the bridges through seismic analyses. Conventional steel restrainer cables are also used to reduce the seismic vulnerability of the bridge and the results are compared to those of the SMA-RDs.

A Study on the Seismic Analysis of Bridge with Lead Rubber Bearing (LRB(Lead Rubber Bearing)가 설치된 교량의 지진해석 연구)

  • Huh, Young;Park, Jin-Hyung
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.374-381
    • /
    • 2000
  • 본 논문에서는 지진 발생시, LRB가 설치된 교량의 시간이력 해석을 수행하였다 이를 위해 LRB의 비선형 거동특성을 Bi-linear로 모형화 하였으며, 기존의 방법인 등가선형으로 모형화된 해석결과와 비교하였다. 또한 LRB받침만 설치된 경우와, LRB받침과 일반탄성받침이 함께 사용된 경우를 해석하여, 받침이 혼합된 경우, 상시하중과 지진하중시 발생할 수 있는 문제점을 검토하였다. 4경간 연속교량에 적용된 해석결과를 보면, LRB만을 설치한 경우, Pot-Bearing만 설치된 경우에 .비해, 고유주기 상승과 이력감쇠에 의한 지진력의 감소와 함께, 지진력의 효과적인 분배를 볼 수 있었으며, 일반탄성받침과의 적절한 조합에 의해서도, 충분한 면진성능을 얻을 수 있었다. 또한 LRB의 등가선형 모델이 Bi-linear 모델에 비해 보수적인 해석결과를 나타내었다.

  • PDF

활동형 지진격리 시스템을 적용한 지진격리 교량의 비선형 유한요소해석(S/W:ABAQUS, H/W:CrayC94)

  • 음성우
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.38-45
    • /
    • 1998
  • 최근 국내외에서 활발히 개발되고 있는 지진격리 시스템은 원자력 발전소, 교량, 중요한 공공건물 등의 지진피해를 최소화하기 이하여 널리 적용되고 있다. 그리고 다른 방법에 비하여 경제성 및 효율성이 우수하기 때문에 관련 연구 및 응용이 활발히 진행되고 있다. 이에 따라 국내외에서 격리시스템의 비선형성과 구조물의 불연속성을 고려한 지진격리 구조물의 해석을 통한 거동을 규명하는 연구가 과거 수년간 활발히 진행되어 왔다. 당사(금호건설)는 상부하중 지지능력과 감쇠능력이 우수한 지진격리장치를 개발하였으며 지진격리장치를 설치한 교량의 지진해석을 수행하여 본 지진격리 시스템의 이론적 성능을 파악하였다. 본 수치해석은 CrayC94에 탑재된 비선형 해석에 뛰어난 것으로 알려진 ABAQU를 이용하였다. 본 지진격리 시스템은 적층고무받침(Laminated Rubber Bearing)과 PTFE 미끄럼받침으로 구성되어 있으며, 적층고무받침은 주로 복원력을 제공하며 PTFE 미끄럼받침은 상부하중을 지지하며 마찰감쇠를 제공하여 에너지를 소산하는 역할을 한다. 본 수치해석에서는 선형스프링과 마찰요소를 이용하여 각각을 모형화하였다. 개발된 지진격리 시스템이 주로 사용될 상판자중이 무거운 다경간 연속 PC Box Girder교를 모델교량으로 선택하여 해석을 수행하였으며 수치해석에 사용된 격리시스템의 사전에 수행된 동특성 실험결과를 활용하였다. 이러한 해석을 통하여 이론적 효율성을 파악할 수 있었다.

  • PDF

Behavior of Solid Circular RC Piers without Seismic Detailing Subjected to Cyclic Lateral Load (수평 반복하중을 받는 비내진상세 RC 중실원형교각의 거동특성)

  • 김재관;김익현;임현우;전귀현
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.83-95
    • /
    • 2001
  • Scale model tests were performed to investigate the seismic behavior and capacity of reinforced concrete piers that were not detailed for seismic load. The prototype pier is of solid circular section. Additional lateral reinforcing bars were not provided that might be required for the confinement. Two kinds of reinforcement details are considered for the vertical longitudinal reinforcing bars: lap spliced and continuous. In the case of lap spliced model all the longitudinal bars were lap spliced at the same height in the bottom plastic hinge zone. Three specimens were constructed and subjected to quasi-static cyclic lateral loading while the vertical load held constant. Non-ductile failure modes were observed in the test of lap spliced models but limited ductile behavior was observed in the test of a continuous longitudinal reinforcement model.

  • PDF

Longitudinal Dynamic Behavior of KASR-Bridge Installed Creep-Couplers (Creep-Coupler가 설치된 KHSR 교량으 종방향 동적거동)

  • 곽종원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.4
    • /
    • pp.111-116
    • /
    • 2000
  • 경간사이에 creep-coupler가 설치된 경부 고속철도 교량에 TGV-K 열차의 제동에 의한 교량의 종방향 동적거동을 해석하였다. 교량은 40m 길이의 2경간 연속교이며, 종방향 충격 하중을 인접 경간 혹은 교대로 전달하기 위한 목적으로 인접하고 있는 두 교량 사이의 creep-coupler가 설치되었다. 철도교의 경우에는 레일에 대한 종방향 축력검토가 매우 중요하므로, 이를 지지하고 있는 교량의 하부구조(교각과 기초)의영 향을 고려한 교량의 동적거동해석이 요구된다. 본 연구에서는 TGV-K의 실제 제동하중에 의한 KHSR(Korea high speed railway)에 건설중인 실제교량의 동해석을 하부구조와 동특성치를 고려하여 수행하였다. TGV-K는 객차사이에 대차가 위치하므로 전체 열차의 모델링이 한꺼번에 이루어 져야한다. 동핵석을 위해서 열차의 3차원 수치모델링이 이루어졌다. TGV-K의 제동은 동력차의 전기적인 제동에 의한 회생제동력(regenerative braking force)과 객착의 기계적인 판제동(disk braking)으로 이루어진다. 이러한 제동작용의 고려에 실제 TGV-K의 제동함수가 사용되었다.

  • PDF