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ABSTRACT

longitudinal behaviors of the bridge for KHSR(Korea high speed rdilway) are investigated due to TGVK braking
corsidering creep couplers installed between the bridges. The bridges are being constructed with two continuous spans
of 40m. Creep couplers cre installed between adjocent bridges in order to distribute and transfer longitudinal impact
forces to adjacent bridges or abutments. It is necessary fo investigate the behaviors of the bridge considering the effects
of substructure(piers and foundations) dynamically. In this study, the behaviors of actual bridges in KHSR lines are analyzed
dynamically using real braking forces by TGV-K considering properties of substructure. Full modeling of overdll frain system
is required because each body of TGV-K is connected through arficulate bogies. It is formulated in three dimensions
numerically for dynamic analysis. The brake of TGV-K is achieved by the combination of regenerative braking force of
electric braking for the power car bogie and mechanical disk braking for the passenger car bogie. Actual braking
function of TGVK is applied to consider braking action.
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1. Introduction have been accomplished. The researches on the
impact of concrete railway bridges by freight
After earlier theoretical studies of analyzing trains have been carried out by Chu et al?

the dynamic behavior of railway bridges by Cai” studied wheel/rail interaction with consi-

Inglis”, various researches of applying newly dering the various irregularities of railroad.

developed and revised train and bridge models However, previous studies had limitations that
they did not consider nonuniform speed of

* A - AuAdr)EaT dddvd train. The study on dynamic longitudinal be-
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2 A%E AQsASI haviors of bridge due to trains riding with high
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speed has rarely performed with focusing on
the braking load by train.

The high-speed railway is constructed in
South-Korea adopts the train system(as called
TGV-K) which has noticeable features of arti-
culated truck system. The vibrations of bridges
caused by high-speed train with considering
bouncing and pitching motions of train in
2-dimension are analyzed by Chang et al® In
the present study, 3-dimensional models for
TGV-K including forwarding motions to in-
vestigate the dynamic behavior of bridge
structures are formulated. The bridge analyzed
is Shin-Jeong bridge which is constructed in
section 4-1 field, Korea. It is composed of 6
concrete one-cell box girder bridges with conti-
nuous 2 spans.

2. Numerical modelling of TGV-K

The high-speed train system, that will be
running in South-Korea(so called TGV-K) differs
from general train system. In general, train

system is a series of cars that consist of one
body and two trucks(or bogies) independently,
but as shown in Fig. 1, TGV-K adopts arti-
culated truck system which has a truck and
longitudinal dampers between each passenger
car. Therefore, for scrutinizing the behavior,
full modeling of overall train system is required.
The high-speed train system investigated in
this study consists of 2 power cars, 2 motorized
trailers, and 16 passenger cars. A power car is
composed of 2 trucks like general power cars,
but a motorized trailer has one independent
truck and shares one articulated truck with a
passenger car. An articulated truck exists bet-
ween each passenger car. And, each truck has 2
axles. Consequently, TGV-K with total length
(distance between first axle and last axle) of
380.15m has total number of 20 carbodies, 23
trucks, and 46 axles

Assumption that primary and bolsterless secon-
dary suspension system of the bogje is idealized
by combination of linear spring and viscous
damper is applied for modeling, and all wheels

effective&)ealing interval = 18.7 m
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Fig. 1 KHST and the distance between each axie of KHST
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of the train are assumed to remain in contact
with the riding surface.

As shown in Fig, 2, to define the relationship
between an articulated bogie and its forward
and backward car-bodies, the relative displace-
ments are assumed as

+ 24
“,= U, __“_bz_z_l‘ﬂ
V,= Vt“{‘yﬂ“z_u‘ll —U(Opi— Hsz)}
A+ W,
w,= wt_{_w%ﬂ+ K O4yi— ebyj)} ey

where u, v, and w mean forward, transverse,
and vertical movements. Using similar pro-
cedures of power car and applying Eq. (1),
the equations of motion for motorized trailers
and passenger cars can be established. Overall
equations of motion are skipped because of
space limitation and the formulations in details
are recorded in reference.”’ In the absence of
grade and neglecting drag, braking forces can

be expressed in mathematical form as®

Fg(v) = mgu(v) A

where, m is a mass of vehicle, g is a gravi-
tational acceleration, v is a velocity of train
and p is a frictional coefficient.

The braking system of high-speed train is

separated into electric braking and mechanical
braking,
For KHST, the combination of two braking
systems will be in use - regenerative braking
force of electric braking for a power car bogie
and disk braking of mechanical braking for a
passenger car bogie.” Fig, 3 shows braking
forces per bogie versus its velocity for rege-
nerative and disk braking force used in this
study.
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Fig. 3 Braking force of KHST

3. Numerical consideration on the bridges
for KHSR

The bridge system used in this study is com-
posed of 6 bridges which have two continuous
span and are made of concrete box girder of
one cell. The individual bridge has a span
length of 40m and a width of 14m. The bridge
system is modeled using space frame elements
including piers, bearings and creep couplers
installed between each bridge under the expansion
joints. Superstructure is supported by one pot
bearing on the center pier and two pad bearings
on side piers. Two creep couplers are installed
between adjacent bridges. Each coupler has
axial stiffness of 171.7MN/m.

M4 M4 (B M16%) 2000.12
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Pot bearing is idealized as rigid link for
translational movement and pad bearing is
simulated using linear spring of which constant
is 11,850MN/m and 12.23MN/m to vertical
and horizontal directions, respectively. Schematic
feature of the bridge system is shown in Fig, 4.

4. Numerical examples

In the present study, Newmark- 5 direct inte-
gration algorithm® with a predictor-corrector
iteration scheme is employed for solving the
equations of motion. Using the present approach
explained above, parametric studies are perfor-
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The effects of creep-couplers on the dynamic
longitudinal responses in Shin-Jeong bridge are
investigated through numerical studies. Riding
speeds of the train are varied up to design
speed of 350km/hr before brake starting time.
Braking of the train on the bridge is activated
at various positions. Fig. 5 shows typical time
history of responses of the bridge. Fig. 6 and
Fig. 7 show maximum responses of the bridge
according to braking positions and initial riding
speeds. Fig. 8 shows the ratio of responses
ignoring creep-couplers to those including
couplers.
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Fig. 5 Typical responses of Shin—jeong bridge due to braking of TGV
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5. Conclusion

In this study, following conclusions are drawn
from this study.

(1) Creep-couplers are effective in the redu-
ction of longitudinal displacements along
to the bridges.

Displacements of the bridge with coupler
are much less than those of the bridges
without it with maximum 70% reduction.

(2) Creep couplers are effective in the re-dis-
tribution and the reduction of longitudinal
forces along to the bridges.

(3) Effects of creep couplers on the re-distribu-
tion and the reduction of longitudinal forces
are significant at center pier. However, the
effects are very small at bridges close to
abutments.

(9 Experimental study will be necessary to
verify this study.
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