• Title/Summary/Keyword: 연속식 미생물연료전지

Search Result 3, Processing Time 0.015 seconds

Effect of Electrode Configuration on the Substrate Degradation in Microbial Fuel Cells (미생물연료전지에서 전극구조가 기질분해에 미치는 영향 연구)

  • Shin, Yujin;Lee, Myoung-Eun;Park, Chi-Hoon;Ahn, Yongtae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.8
    • /
    • pp.489-493
    • /
    • 2017
  • Microbial fuel cells (MFC) are bio-electrochemical processes that can convert various organic materials present in wastewater into electrical energy. For scaling-up and practical application of MFC, it is necessary to investigate the effect of anode size, electrode distance, and total area of anode on substrate degradation. Spaced electrode assembly (SPA) type microbial fuel cell with multiple anodes treating domestic wastewater was used for simulation. According to computer simulation results, the shorter the distance between electrodes than the size of single electrode, the faster the substrate degradation rate. Particularly, when the total area of the anode is large, the substrate decomposition is the fastest. In this study, it was found that the size of the anode and the distance between the electrodes as well as the cathode electrode, which is known as the rate-limiting step in the design of the microbial fuel cell process, are also important factors influencing the substrate degradation rate.

Effects of operating parameters on the performance of continuous flow microbial fuel cell (연속식 미생물연료전지 성능에 미치는 운전변수의 영향)

  • Chung, Jae-Woo;Choi, Young-Dae;Lee, Myoung-Eun;Song, Young-Chae;Woo, Jung-Hui;Yoo, Kyu-Seon;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.4
    • /
    • pp.489-494
    • /
    • 2013
  • Effects of operating parameters such as hydraulic retention time(HRT), recycle ratio and influent COD concentration on the performance of a continuous flow microbial fuel cell(MFC) were investigated. Decrease of HRT improved mass transfer of substrate to electrogenic microorganisms, therefore resulting in increased electrode voltage and power generation of MFC. Increase of HRT promoted COD removal by elongating retention time for COD removal in MFC. Recycling of effluent increased the COD removal and coulombic efficiencies by returning suspended microorganisms into MFC. Increase of influent COD enhanced COD removal due to the improved mass transfer of substrate. Decrease of coulombic efficiency by the increase of the HRT and influent COD concentration indicated that they enhanced the activities of fermentative bacteria.

Electricity Generation and Microbial Community variation in Microbial Fuel Cell with various Electrode Combinations. (다양한 탄소전극조합에 따른 미생물 연료전지의 전기발생량 및 미생물 군집변화)

  • Kwon, Jae-Hyeong;Choi, Soo-Jung;Cha, Jae-Hwan;Kim, Hyo-Soo;Kim, Ye-Jin;Yu, Jae-Cheul;Kim, Chan-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.87-96
    • /
    • 2010
  • The electrode material is one of the factors affecting the power production of microbial fuel cell. In this study, effects of carbon electrode material, thickness and configuration on the power density, biofilm formation and microbial community diversity of microbial fuel cell were investigated. To optimize the anode-cathode electrode assembly, seven lab-scale reactors which had various carbon electrode constructions were operated in continuous mode. Under the steady state condition, the electrode combination of graphite felt (6 mm) with hole showed the highest cell voltage of 238 mV and the coulombic efficiency of 37%. As a result of SEM analysis, the bacteria growing on surface of knitted type of carbon cloth and graphite felt electrode ncreased significantly. The change of dominant species between seeding sludge and biofilm on the surface of anode electrode, microbial analysis with PCR-DGGE showed that the dominant species of seeding sludge are quite different from those of biofilm on the surface of each anode electrode. Especially Geobacter sp., a well known electrochemical bacteria, was found as the dominant species of the electrode combination with graphite felt.