Electricity Generation and Microbial Community variation in Microbial Fuel Cell with various Electrode Combinations.

다양한 탄소전극조합에 따른 미생물 연료전지의 전기발생량 및 미생물 군집변화

  • Kwon, Jae-Hyeong (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Choi, Soo-Jung (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Cha, Jae-Hwan (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Kim, Hyo-Soo (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Kim, Ye-Jin (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Yu, Jae-Cheul (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Kim, Chan-Won (Department of Civil and Environmental Engineering, Pusan National University)
  • 권재형 (부산대학교 사회환경시스템공학과) ;
  • 최수정 (부산대학교 사회환경시스템공학과) ;
  • 차재환 (부산대학교 사회환경시스템공학과) ;
  • 김효수 (부산대학교 사회환경시스템공학과) ;
  • 김예진 (부산대학교 사회환경시스템공학과) ;
  • 유재철 (부산대학교 사회환경시스템공학과) ;
  • 김창원 (부산대학교 사회환경시스템공학과)
  • Received : 2009.11.29
  • Accepted : 2010.01.04
  • Published : 2010.01.31

Abstract

The electrode material is one of the factors affecting the power production of microbial fuel cell. In this study, effects of carbon electrode material, thickness and configuration on the power density, biofilm formation and microbial community diversity of microbial fuel cell were investigated. To optimize the anode-cathode electrode assembly, seven lab-scale reactors which had various carbon electrode constructions were operated in continuous mode. Under the steady state condition, the electrode combination of graphite felt (6 mm) with hole showed the highest cell voltage of 238 mV and the coulombic efficiency of 37%. As a result of SEM analysis, the bacteria growing on surface of knitted type of carbon cloth and graphite felt electrode ncreased significantly. The change of dominant species between seeding sludge and biofilm on the surface of anode electrode, microbial analysis with PCR-DGGE showed that the dominant species of seeding sludge are quite different from those of biofilm on the surface of each anode electrode. Especially Geobacter sp., a well known electrochemical bacteria, was found as the dominant species of the electrode combination with graphite felt.

미생물 연료전지의 전극소재는 전기발생량에 영향을 미치는 중요인자이다. 본 연구에서는 탄소전극의 두께 구조가 미생물 연료전지의 전력밀도 미생물 형성 미생물 군집의 다양성에 미치는 영향에 관해 연구를 수행하였다. 산화 환원 전극조합의 능률적인 구성을 위해 다양한 형태의 탄소전극으로 이루어진 7개 실험실 규모의 반응기가 연속식 공정으로 운전되었다. 반응기의 안정화 상태에서 구멍이 있는 흑연펠트(6 mm 두께) 조합이 전기발생량 238 mV, 그리고 쿨롱효율이 37%로 가장 높은 셀 성능을 나타내었다. 산화전극 표면에 미생물의 생성을 관찰하기 위해 SEM 촬영을 실시한 결과, 니트형태의 탄소섬유와 흑연펠트의 표면에 미생물양의 생성이 증가함을 관찰할 수 있었다. 식종 슬러지와 산화전극 부착성장 미생물의 우점종 변화를 관찰하기 위해 PCR-DGGE를 통한 미생물 군집해석 결과, 식종슬러지내의 미생물 군집과 운전 후 각 전극에 우점화 된 미생물의 군집에는 차이를 보였다. 특히 흑연펠트의 탄소섬유에 전기활성 박테리아로 알려진 eobacter 종이 우점화 된 것을 확인할 수 있었다.

Keywords

References

  1. Stern review," The Economics of Climate Change"(2006).
  2. B. E Logan., Aelerman. P., Hamelers. P., Rozendal. R., and Schroeder. U., Keller. J, Freguiac. S, Verstratete. W. & Rabaey. K., "Microbial fuel cells: methodology and technology," Environ. Sci. Technol. 40, 5181-5192 (2006). https://doi.org/10.1021/es0605016
  3. V. Fedorovich, S., D. Varfolomeev., A. Sizov., and I. Goryanin., "Multi-electrode microbial fuel cell with horizontal liquid flow," Water sci. & Technol., 60(2), 347-355(2009). https://doi.org/10.2166/wst.2009.139
  4. Rabaey K., and Verstraete W., "Microbial fuel cells: novel biotechnology for energy generation,"Trends Biotechnol, 23(6), 291-298(2005). https://doi.org/10.1016/j.tibtech.2005.04.008
  5. B. E Logan., Microbial Fuel cells, john Wiley & Sons, Inc., 62-76 (2008).
  6. Ouitrakul, S., Sriyudthsak M., Charojrochkul S., and Kakizono T., "Impedance analysis of bio-fuel cell electrodes,"Biosens. Bioelectron., 23(6), 721-727(2007). https://doi.org/10.1016/j.bios.2007.08.012
  7. Pham, T. H., Aelterman, P., and Verstraete, W., "Bioanode performance in bioelecrochemical systems: recent improvements and prospects,"Trends in biotechnol., 27(3), 168-178(2009). https://doi.org/10.1016/j.tibtech.2008.11.005
  8. H. Tsai., C. Wu., C. Lee., and E. shih., "Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes,"J. Power Source, 194, 199-205(2009). https://doi.org/10.1016/j.jpowsour.2009.05.018
  9. G. Chen., S. Choi., T. Lee., G. Lee., J. Cha., and C. Kim., "Application of biocathode in microbial fuel cells : cell performance and microbial community,"Biotechnol. Proc., 79, 379-388(2008).
  10. J. Cha., S. Choi., H. Yu., H. Kim., and C. Kim., "Directly applicable microbial fuel cells in aeration tank for wastewater treatment,"Bioelectrochemistry, in press(2009).
  11. 김응인, 박옥현, 정인경," 생물여과를 이용한 TCE/PCE제거및 DGGE법을 이용한 관련미생물 군집변화에 관한 연구,"대한환경공학회지, 30(11), 1161-1169(2008).
  12. H. S. Park., B. H. Kim., H. S. Kim., H. J. Kim., G. T. Kim., M. Kim., I. S. Chang., Y. K. Park., and H. I. Chang., "A Novel Electrochemically Active and Fe(III) - reducing Bacterium Phylogenetically Related to Clostridiumbutyricum Isolated from a Microbial Fuel Cell,"FEMS microbiology letters, 223(1), 297-306(2001).
  13. T. H. Pham., N. Boon., K. D. Maeyer., M. H. fte., K. Rabaey., and W. Verstraete., "Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation,"microbiol. biotechnol., 80(6), 985-993(2008). https://doi.org/10.1007/s00253-008-1619-7
  14. S., Ishii, K. Watanabe.,. S. Yabuki., B. E. Logan., and Y. Sekiguchi., "Comparison of Electrode Reduction Activities of Geobacter sulfurreducens and an Enriched Consortium in an Air- Cathode Microbial Fuel Cell,"Environ. Microbiol., 23(74), 7348-7355(2008).