• Title/Summary/Keyword: 연속분포 HMM

Search Result 33, Processing Time 0.023 seconds

A Comparison of Discrete and Continuous Hidden Markov Models for Korean Digit Recognition (한국어 숫자음 인식을 위한 이산분포 HMM과 연속분포 HMM의 성능 비교 연구)

  • 홍형진
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.157-160
    • /
    • 1994
  • 본 논문에서는 한국어 숫자음 인식에 대한 이산분포 HMM과 연속분포 HMM의 인식 성능을 비교하였다. 일반적으로 연속분포 HMM은 많은 계산량이 필요하고, 학습시 초기값이 매우 민감하다는 단점이 있지만, 이산분포 HMM의 VQ로 인한 왜곡을 제거함으로써 인식률을 향상시킬 수 있다. 여기서는 성능비교를 위해서 mel-cepstrum의 분석차수, 이산분포 HMM의 codebook 크기, 연속분포 HMM의 miture 개수등에 따른 인식성능을 비교하였다. 실험 결과 이산분포 HMM에서는 mel-cepstrum 벡터가 14차이고, codebook 크기가 64일 때 가장 좋은 성능을 나타냈으며, 연속부포 HMM에서는 mel-cepstrum 벡터가 16차이고 miture가 3개일 때 가장 좋은 결과를 얻을 수 있었다. 특히 학습 데이터의 양이 적은 경우에는 연속분포 HMM이 이산분포 HMM보다 더 좋은 인식률을 나타내었다.

  • PDF

Korean Word Recognition Using Semi-continuous Hidden Markov Models (준영속분포 HMM을 이용한 한국어 단어 인식)

  • 조병서;이기영;최갑석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.46-52
    • /
    • 1992
  • 본 논문에서는 HMM 의 이산분포를 연속분포로 근사시키는 준 연속분포 HMM 에 의한 한국어 단어인식에 관하여 연구하였다. 이 모델의 생성과정에서는 입력벡터의 출력확률을 혼합 다차원 정규분 포로 가정하여 입력벡터의 확률함수와 코드위드의 심볼출력을 선형결합하므로써, 연속분포 모델로 근사 시켰으며, 단어인식과정에서는 생성모델에 의해 이산분포 모델에서 발생되는 양자와 왜곡을 감소시키므 로써 인식률을 향상시켰다. 이 방법을 평가하기 위하여 DDD 지역명을 대상으로 이산분포 HMM과 준연 속분포 HMM 의 비교실험을 수행하였다. 그 결과 준연속분포 HMM 에 의하여 이산분포 HMM 보다 향상된 인식률을 얻을 수 있었다.

  • PDF

A Study on the Rtension of HMM Parameters for Speech Recognition (음성인식을 위한 HMM의 파라메터 확장에 관한 연구)

  • 박창호
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.152-156
    • /
    • 1994
  • 본 논문에서는 연속출력 확률분포 HMM 모델의 단점을 보완하기 위해 1) 지속시간 확률분포를 갖는 HMM, 2) 동적특징 파라메터를 부여한 HMM, 3) 혼합연속출력 확률분포 HMM을 구성하여 한국어 단음절에 대한 인식실험을 하였다. 실험결과 화자 종속에서는 연속출력 확률분포 HMM 보다 지속시간 확률분포를 갖는 HMM의 경우 0.70%, 동적특징 파라메터를 부여한 HMM의 경우 1.06%, 혼합연속출력 확률분포 HMM의 경우 1.64%의 인식류리 향상되었다. 화자 독립에서는 연속출력 확률분포 HMM보다 동적특징 파라메터를 부여한 HMM의 경우 1.4%, 혼합연속 출력 확률분포 HMM의 경우 2.36%, 지속시간 확률분포를 갖는 HMM의 경우 2.78%의 인식률이 향상되었다.

  • PDF

Korean Continuous Speech Recognition Using Discrete Duration Control Continuous HMM (이산 지속시간제어 연속분포 HMM을 이용한 연속 음성 인식)

  • Lee, Jong-Jin;Kim, Soo-Hoon;Hur, Kang-In
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.81-89
    • /
    • 1995
  • In this paper, we report the continuous speech recognition system using the continuous HMM with discrete duration control and the regression coefficients. Also, we do recognition experiment using One Pass DP method(for 25 sentences of robot control commands) with finite state automata context control. In the experiment for 4 connected spoken digits, the recognition rates are $93.8\%$ when the discrete duration control and the regression coefficients are included, and $80.7\%$ when they are not included. In the experiment for 25 sentences of the robot control commands, the recognition rate are $90.9\%$ when FSN is not included and $98.4\%$ when FSN is included.

  • PDF

A Study on the Real-time Word Spotting by Continuous density HMM (연속분포 HMM에 의한 실시간 Word Spotting 에 관한 연구)

  • 서상원
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.92-95
    • /
    • 1995
  • 연속분포 HMM을 사용한 실시간 로봇 암 제어 시스템에 대해 기술하고 있다. 본 시스템은 자연스러운 문장의 로봇 암 제어 명령 발성을 받아 핵심단어 인식의 framework을 통한 명령 인식 및 로봇 제어를 구현하고 있다. 로봇 몸체의 부분, 방향, 각도, 동작명령들에 대해 각기 우향 HMM, 이외의 비 핵심어들에 대해서는 이들을 한데 모아 ergodic형 상태천이를 모델링하는 garbage HMM을 형성했는데, 조사, 감탄사 등을 따로 모은 garbage 모델과, silence 및 배경 잡음에 대한 garbage 모델을 형성, 학습 및 인식에 포함시켜 연결단어 인식을 수행함으로써 핵심단어 인식의 효과를 얻었다. 이때 핵심단어들의 사용에 있어 간단한 문법적 제약을 가정하였다. 남성화자 35명을 대상으로 30개 문형에 대해 데이터 수집용 개념적 문장을 구성하여 음성 데이터를 수집하였다. 학습 화자에 대한 제어 명령 인식률은 95% 이상을 나타내고 있으며, 비 학습화자에 대한 인식율은 90% 이상이다. 또한 학습된 단어외의 비 핵심단어들의 사용에 대해서도 긍정적인 인식 성능을 보였다.

  • PDF

A Study on Recognition of Korean Continuous Speech using Discrete Duration CHMM. (이산 시간 제어 CHMM을 이용한 한국어 연속 음성 인식에 관한 연구)

  • 김상범
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.368-372
    • /
    • 1994
  • 확률적 모델을 이용한 HMM 으로 한국어 연속 음성 인식시스템을 구성하였다. 학습 모델로서는 양자화 DCK가 없는 연속출력 확률밀도를 사용한 연속출력 확률분포 HMM과 과도 구간 및 정상 구간의 시간구조를 충분히 BYGUS할 수 없는 것을 계속시간 확률 파라메터를 추가하여 보완한 이산 지속시간 제어 연속출력 확률분포 HMM을 이용하였다. 인식 알고리즘은 시계열 패턴의 시간축상에서의 비선형 신축을 고려한 에 매칭으로서, 음절의 경계를 자동으로 검출하는 O에을 이용하였다. 실험에서 사용된 연속음성데이타는 4연 숫자음과 연속음성 10문장으로 하였다. 인식 실험 결과 4연 숫자음에서 CHMM은 80.7%, DDCHMM은 92.9%의 인식률을 얻었고, 신문 사설에서 발췌한 연속 음성문장의 경우 CHMM 54.2%, DDCHMM에서는 68.9%을 얻어, 시간장 제어를 고려한 DDCHMM이 CHMM보다 SHB은 인식률을 얻었다.

  • PDF

A Comparative Study on the phoneme recognition rate with regard to HMM training algorithms (HMM 훈련 알고리즘에 따른 음소인식률 비교 연구)

  • 구명완
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.298-301
    • /
    • 1998
  • HMM 훈련 방법에 따른 음소인식률의 변화에 대하여 기술한다. 음성모델은 이산 확률 밀도 혹은 연속 확률 밀도를 갖는 HMM을 사용하였으며, 훈련 알고리즘으로서는 forward-backward 와 segmental K-means 알고리즘을 사용하였다. 연속 확률 밀도는 N개의 mixture로 구성되어 있는데 1개의 mixture로 확장할 경우에서는 이진 트리 방식과 one-by-one 방식을 사용하였다. 여러 가지의 조합을 이용하여 음소인식 실험을 수행한 결과 연속 확률 분포를 사용하고 one-by-one 방식을 사용한 forward-backward 알고리즘이 가장 우수한 결과를 나타내었다.

  • PDF

A Study on Speech Recognition System Using Continuous HMM (연속분포 HMM을 이용한 음성인식 시스템에 관한 연구)

  • Kim, Sang-Duck;Lee, Geuk
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 1998.10a
    • /
    • pp.221-225
    • /
    • 1998
  • 본 논문에서는 연속분포(Continuous) HMM(hidden Markov model)을 기반으로 하여 한국어 고립단어인식 시스템을 설계, 구현하였다. 시스템의 학습과 평가를 위해 자동차 항법용 음성 명령어 도메인에서 추출한 10개의 고립단어를 대상으로 음성 데이터 베이스를 구축하였다. 음성 특징 파라미터로는 MFCCs(Mel Frequency Cepstral Coefficients)와 차분(delta) MFCC 그리고 에너지(energy)를 사용하였다. 학습 데이터로부터 추출한 18개의 유사 음소(phoneme-like unit : PLU)를 인식단위로 HMM 모델을 만들었고 조음 결합 현상(채-articulation)을 모델링 하기 위해 트라이폰(triphone) 모델로 확장하였다. 인식기 평가는 학습에 참여한 음성 데이터와 학습에 참여하지 않은 화자가 발성한 음성 데이터를 이용해 수행하였으며 평균적으로 97.5%의 인식성능을 얻었다.

  • PDF

Study of Speech Recognition System Using the Java (자바를 이용한 음성인식 시스템에 관한 연구)

  • Choi, Kwang-Kook;Kim, Cheol;Choi, Seung-Ho;Kim, Jin-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.41-46
    • /
    • 2000
  • In this paper, we implement the speech recognition system based on the continuous distribution HMM and Browser-embedded model using the Java. That is developed for the speech analysis, processing and recognition on the Web. Client sends server through the socket to the speech informations that extracting of end-point detection, MFCC, energy and delta coefficients using the Java Applet. The sewer consists of the HMM recognizer and trained DB which recognizes the speech and display the recognized text back to the client. Because of speech recognition system using the java is high error rate, the platform is independent of system on the network. But the meaning of implemented system is merged into multi-media parts and shows new information and communication service possibility in the future.

  • PDF

On the Use of a Parallel-Branch Subunit Mod디 in Continuous HMM for improved Word Recognition (연속분포 HMM에서 평행분기 음성단위를 사용한 단어인식율 향상연구)

  • Park, Yong-Kyuo;Un, Chong-Kwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2E
    • /
    • pp.25-32
    • /
    • 1995
  • In this paper, we propose to use a parallel-branch subunit model for improved word recognition. The model is obtained by splitting off each subunit branch based on mixture component in continuous hidden Markov model(continuous HMM). According to simulation results, the proposed model yields higher recognition rate than the single-branch subunit model or the parallel-branch subunit model proposed by Rabiner et al[1]. We show that a proper combination of the number of mixture components and the number of branches for each subunit results in increased recognition rate. To study the recognition performance of the proposed algorithms, the speech material used in this work was a vocabulary with 1036 Korean words.

  • PDF