• Title/Summary/Keyword: 연소지

Search Result 641, Processing Time 0.038 seconds

A Study on Combustion Flow Characteristics in A Heavy-Duty Diesel Engine Equipped with EGR (대형디젤기관에서 EGR 적용시 연소유동해석)

  • Baik, Doo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.784-787
    • /
    • 2006
  • Even if EGR is known as a technology which dramatically reduces NOx emission, its application is a quite complicate since it affects fuel economy and increase of PM emission. Therefore, it is a very important issue to investigate an optimal EGR rate considering all engine parameters. This research was numerically conducted to predict combustion and emission characteristics with respect to various EGR rates.

  • PDF

Combustion Characteristics of Land Fill Gas according to the Diameter of the Flame outlet of the Pre-chamber Spark Plug (예연소실 점화 플러그의 화염 분출구 직경에 따른 매립지가스의 연소 특성)

  • Kim, Kwonse;Jeon, Yeong-Cheol;Choi, Doo-Seuk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.111-117
    • /
    • 2021
  • This research work is to suggest the experimental results capable of solving an initial unsuitability of combustion and environment in a constant volume combustion chamber by using LFG(Land Fill Gas) which consists of 40% CO2 and 60% CH4. The experimental condition is set as 0.9~1.6 of air-fuel ratio, 3bar of combustion pressure, 25℃ of room temperature, methane for using gas, and 2.5~4.5 of Pre-chamber hole sizes. As a result, it can be seen that diffusion of initial flame is significantly increased by M3.0 model comparing with other one. The reason for the characteristics is that orifice effect is extremely improved by 0.9, 1.0, and 1.2 of air-fuel ratio comparing with other one. Consequently, this experiment is shown that M3.0 model is partially capable of improving combustion performance than a conventional ignition plug in case of applying to LFG with Pre-chamber design.

Numerical study of a conical MILD combustor with varing the fuel flow rate (연료유량 변화에 따른 원추형 MILD 연소로의 수치적 해석)

  • Kim, Tae Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3370-3375
    • /
    • 2014
  • MILD combustion is a highly favored technology for solving the trade-off relation between high thermal efficiency and low pollutant emissions. The system has low NOx concentration in high temperature combustion by recirculating the combustion gas, as well as improving the thermal efficiency by making the internal temperature in a combustion furnace uniform. This study describes the combustion characteristics of a conical MILD combustor in a laboratory-scale furnace by adjusting the equivalence ratio with the fuel gas flow rate while maintaining a constant air flow rate of the furnace. The MILD regime in the furnace is well characterized and the in-furnace temperature and emissions were predicted, respectively, for the range of equivalence of 0.69 - 0.83. For the range of equivalence ratios, this study confirmed the existence of a stable flame region that has an approximately $300^{\circ}C$ temperature difference between the maximum flame temperature region and main reaction region.

A Study on Flash Points and Fire Points of Acids Using Closed Cup and Open-cup Apparatus (밀폐식과 개방식 장치를 이용한 Acid류의 인화점과 연소점에 관한 연구)

  • Ha, Dong-Myeong;Han, Jong-Geun;Lee, Sung-Jin
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.29-34
    • /
    • 2006
  • The flash and fire point are the most important combustible properties used to determine the potential for the fire and explosion hazards of flammable material. The flash point is defined as the lowest temperature at which a flammable liquid gives off sufficient vapor to form an ignitable mixture with air near its surface or within a vessel. The fire point is the temperature of the flammable liquid at which there will be flaming combustion, sustained 5 seconds in response to the pilot flame. In this study, the flash points and fire points were measured to present raw data of the flammable risk assessment for acids, using Pensky-Martens Closed Cup(C.C.) apparatus (ASTM-D93) and Tag Open-cup (O.C.) apparatus(ASTM D 1310-86). The measured fire points were compared with the estimated values based on 1.11 times stoichiometric concentration. The values calculated by the proposed equation were in good agreement with measured values.

A Study on Combustion Characteristics of Starch (전분 분진의 연소특성에 관한 연구)

  • 김정환;현성호;이창우
    • Fire Science and Engineering
    • /
    • v.15 no.2
    • /
    • pp.1-5
    • /
    • 2001
  • We had investigated combustion properties of starch. Decomposition of starch scavenged by pre-cipitator of spinning factory with temperature were investigated using DSC and TGA. Combustion properties of starch according to amount were checked as temperature variation according to time using spontaneous ignition apparatus. Moreover, combustion properties with blowing or without blowing condition were checked in spontaneous ignition apparatus. As results of thermal analyses, increase in raising temperature causes initial smoldering temperature to move towards low temperature section. In addition, as amount of starch was increased, initial smoldering temperature was lowered. All of combustion forms were smoldering combustion. Initial smoldering temperature was low more slightly with blowing condition than without blowing condition in spontaneous ignition apparatus, which condition made heating value high.

  • PDF

Combustion Test for a Supersonic Combustor Using a Direct-Connected Facility (직결형 설비를 이용한 초음속 연소기 연소 시험)

  • Yang, Inyoung;Lee, Kyung-Jae;Lee, Yang-Ji;Lee, Sanghoon;Kim, Hyungmo;Park, Poomin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.1-7
    • /
    • 2018
  • A combustion test for a supersonic combustor was conducted using a direct-connected type supersonic combustor test facility. The facility was verified for the capability of simulating required flow conditions. The test condition was maintained at Mach 2.0, $915^{\circ}C$ and 496 kPa for 15 s. Using gaseous hydrogen as the fuel, the combustor model was also tested for its ignition and flame holding capability at the fuel equivalence ratio of 0.12. Combustion efficiency was 71%, and the supersonic flow regime was obtained at this test condition.

Development of a Direct-Connected Supersonic Combustor Test Facility (직결형 초음속 연소기 시험 설비 개발)

  • Yang, Inyoung;Lee, Kyung-jae;Lee, Yang-ji;Kim, Hyung-Mo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.290-293
    • /
    • 2017
  • A direct-connected, continuous type combustion test facility was developed to test a supersonic combustor model used in scramjet engines. The facility requirements were determined by assuming the flight speed of Mach 5, yielding the combustor inlet flow speed of Mach 2. Also the cross-section of the supersonic combustor under test was assumed as $32mm{\times}70mm$. As a result, the facility was designed to have the flow total pressure of 548 kPaA, total temperature of 1,320 K, and flow rate of 0.776 kg/s. The facility consists of a turbo type air compressor, electric air heater, vitiation air heater and a two dimensional facility nozzle to accelerate the flow to Mach 2. Also, an oxygen supply system was added to compensate the vitiation. The exhaust de-pressurization system is not added. Designed pressure, temperature, and flow rate were verified through the test operation of the facility.

  • PDF

A Study on Soot Formation in Premixed Constant-Volume Combustion at High Pressures (高壓下의 定積 豫混合氣燃燒에 있어서 煤煙생成에 關한 硏究)

  • 임재근;배명환;김종일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.589-597
    • /
    • 1992
  • The effect of pressure on soot formation in premixed propane-air combustion is investigated at high pressures over the pressure range of 1 to 5 MPa by using a specially designed constant volume combustion bomb. The combustiom chamber of disk type with eight spark plugs located on the circumference at an interval of 45deg is 100mm in diameter by 14mm thick. The end gases are compressed to high pressures by the eight converging flames. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in-situ laser extinction technique, and the burnt gas temperature during the same period is measured by the two-color method. It is found that the soot yield rises with 50 to 100% for the respective equivalence ratio range of 1.9-2.2 at an interval of 0.1 when the combustion pressure is increased from 1 to 5 MPa, and that the turbulent flames decrease in the soot yield as compared with the laminar flames because the burnt gas temperatures increase with the drop of heat loss.

A Study of Improving Combustion Stability with Sonic Wave Radiation (음파를 이용한 연소 안정성 개선에 관한 연구)

  • Min, Sun-ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.401-406
    • /
    • 2020
  • NOx (nitrogen oxide) in the exhaust gas engines causes severe air pollution. NOx is produced under high-temperature combustion conditions. EGR (exhaust gas recirculation) is normally used to reduce the combustion temperature and NOx production. As the EGR ratio increases, the NOx level becomes low. On the other hand, an excessively high EGR ratio makes the combustion unstable resulting in other air pollution problems, such as unburned hydrocarbon and higher CO levels. In this study, the improvement of fuel droplets moving by the radiation of sonic waves was studied for the stable combustion using analytic and experimental methods. For the analytical study, the effects of the radiation of a sonic wave on the fuel droplet velocity were studied using Fluent software. The results showed that the small droplet velocity increased more under high-frequency sonic wave conditions, and the large droplet velocity increased more under low-frequency sonic wave conditions. For the experimental study, the combustion chamber was made to measure the combustion pressure under the sonic wave effect. The measured pressure was used to calculate the heat release rate in the combustion chamber. With the heat release rate data, the heat release rate increased during the initial combustion process under low-frequency sonic wave conditions.

Influence of Combustion Flame on Flashover Characteristics Due to Fire Occurrence (화재발생시 직류 플래시오버특성에 미치는 연소화염의 영향)

  • 하장호;김인식;정우영
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.25-34
    • /
    • 2003
  • In this paper, characteristics of the DC flashover voltage in the horizontal air gap of sphere-sphere/needle-needle electrode system were investigated when the combustion flame of paraffin oil was present between the two electrodes. The reduction characteristic of DC flashover voltage was discussed with the thermal ionization process, the relative air density and the deflection phenomena in the shape of flames that caused by the corona wind and Coulomb's force. As the results of an experimental investigation, It was found that the reduction characteristics of DC flashover voltages with flames were affected strongly by the flame deflection and the change of relative air density. It was also found that the thermal ionization phenomena were not important in the range of combustion flame temperature.