• Title/Summary/Keyword: 연소성능

Search Result 1,382, Processing Time 0.029 seconds

A Study on the Combustion Stability Evaluation of Double Swirl Coaxial Injector (이중 와류 동축형 분사기의 연소안정성 평가에 관한 연구)

  • ;;;Kim, Hong-Jip;Choe, Hwan-Seok;Lee, Su-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.41-47
    • /
    • 2006
  • A liquid rocket thrust chamber should have a high confidence in its combustion performance and combustion stability. Expecially, the injector of which function is spraying and mixing propellants plays an important role in getting the confidence. This study was carried out to evaluate combustion stability of a double swirl coaxial injector by using the model similarity method. Besides, in case of a baffle which was used to improve combustion stability, the length and gap effects of the baffle were investigated.

Operation Techniques of Liquid Rocket Engine Combustor Ground Firing Test Facility (액체로켓엔진 연소기 지상연소시험설비 운영관리 기술)

  • Kang, Dong-Hyuk;Lim, Byoung-Jik;Moon, Il-Yoon;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.157-162
    • /
    • 2006
  • A Liquid Rocket Engine(LRE) ground firing test facility was built in Korea Aerospace Research Institute(KARI) in 2001 to develop the LRE for the first Korean liquid rocket, KSR-III. Around 170 tests were conducted since its establishment until recently by September 2006, and in the meantime, a considerable improvements were made in the capability. This paper describes the outline, conducted tests and operation techniques which have been accumulated through the operation of KARI LRE ground firing test facility.

  • PDF

Study for combustion characteristic according to the O/F ratio of low thrust rocket engine using green propellant (친환경 추진제를 사용하는 저추력 엑체로켓엔진의 혼합비에 따른 연소 특성)

  • Jeon, Jun-Su;Kim, Young-Mun;Hwang, O-Sik;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.134-137
    • /
    • 2009
  • Combustion tests of a low thrust rocket engine was performed to get combustion characteristics, which used a high concentrated hydrogen peroxide and kerosene as the oxidizer and fuel. The engine consisted of multi injector(six coaxial swirl injectors), chamber, nozzle and catalyst ignition system. The test was carried out by changing O/F ratio from 3.8 to 11.0. The experimental results showed that combustion efficiency was highest at O/F ratio from 5 to 6 and pressure fluctuations of all the range were lower than 5%.

  • PDF

A Study on Combustion Characteristics of a Multi Injector Rocket Engine using $H_2O_2$/Kerosene as propellants (과산화수소/케로신 다중 인젝터의 혼합비에 따른 연소 특성 연구)

  • Yu, I-Sang;Jeon, Jun-Su;kim, Jai-Ho;Kim, Wan-Chan;Ko, Yung-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.129-132
    • /
    • 2012
  • In this study, combustion performance tests of a multi coaxial-swirl injector engine using hydrogen peroxide and kerosene as propellants were performed to evaluate combustion characteristic according to mixture ratio between 6.0 and 9.0 by criterion of designed(7.6). Combustion characteristics were evaluated by calculated characteristic exhaust velocity($c^*$) and pressure fluctuation. Test results showed that the combustion efficiency was over 90% and the pressure fluctuation was within 1%.

  • PDF

Analysis of Heat Exchanging Performance of Heat Recovering Device Attached to Exhaust Gas Duct (열회수장치에 의한 열회수성능 분석)

  • 서원명;윤용철;강종국
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.212-222
    • /
    • 2000
  • This study was performed to investigate the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. The experimental heat recovery system is mainly consisted of LPG combustion chamber and two heat recovery units; unit-A is attached directly to the exhaust gas flue, and unit-B is connected with unit-A. Heat recovery performance was evaluated by estimating total energy amounts by using enthalpy difference between two measurement points together with mass flow rate of gas and/or air passing through each heat recovery unit depending on 5 different flow rates controlled by voltage meter. The results of this experimental study, such as heat exchange behavior of supply air tubes and exhaust air passages crossing the tubes, pressure drop between inlet and outlet, heat recovery performance of exchange unit, etc., will be used as fundamental data for designing optimum heat recovery device to be used for fuel saving purpose by reducing heat loss amounts mostly wasted outside of greenhouse through flue.

  • PDF

Performance Characteristics of Thrust Measurement System for Hot-Firing Test of Small Liquid Propulsion Engines (소형 액체 추진기관 연소 시험을 위한 추력 측정 장치의 성능 특성 연구)

  • Kim, In-Tae;Huh, Hwan-Il;Kim, Jeong-Soo;Jang, Ki-Won;Lee, Jae-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.122-129
    • /
    • 2004
  • An accurate thrust measurement is one of the critical paths to the successful test and evaluation program of small liquid propulsion engines. This study describes the design factors for the development of thrust measurement system (TMS) as well as manufacturing practice of TMS hardware. We investigate characteristics of the TMS and its performance through hot-firing test of small liquid engine in a vacuum test cell which is capable of simulating 100,000 ft of altitude or higher. For performance test of TMS, we measure thrusts by changing propellant injection pressure at steady state firing mode as well as at pulse firing mode. Measured eigen frequency of the TMS is 67 Hz. Linearity test of the TMS shows good performance with less than 0.5% of linearity error.

Configuration Design, Hot-firing Test and Performance Evaluation of 200 N-Class GCH4/LOx Small Rocket Engine (Part I: A Preliminary Design and Test Apparatus) (200 N급 GCH4/LOx 소형로켓엔진의 형상설계와 성능시험평가 (Part I: 예비설계와 시험장치))

  • Kim, Young Jin;Kim, Min Cheol;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In this study, a configuration design of a CH4/LOx small rocket engine was made and test system was established for the performance evaluation. A coaxial swirl injector was chosen because of its remarkable atomization performance and low combustion instability. Three aspect ratios for the combustion chamber configuration, i.e., 1.5, 1.8, and 2.1 were also set for the comparison of the combustion efficiency. The reliability of the thrust measurement rig was enhanced by pre-and post-calibration process. From the preliminary ground hot-firing test, the measured thrust and specific impulse values were 89.2 N and 181.8 s, respectively, which were 21.6% lower than the ideal values. In addition, the efficiency of characteristic velocity was measured as 84.2%.

Performance Test of a Single Pulse Gun for Transverse Pressure Wave Generation (횡단압력파 발생을 위한 단일 펄스건의 압력파 성능시험)

  • Lee, Jongkwon;Song, Wooseok;Koo, Jaye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.599-606
    • /
    • 2019
  • The pulse gun device is designed to identify the transverse pressure wave propagation/damping mechanism into the combustion flow field and in the combustion chamber according to the arrangement of multiple injectors. The manufactured pulse gun was tested to verify operability at the target combustion pressure and control of the pressure wave intensity. Gas nitrogen was used to pressurize the high-pressure tube and an OHP film of $100{\mu}m$ thickness was used for the diaphragm. To check the speed and intensity of the pressure waves, the dynamic and static pressure were measured using the pressure transducer. The performance test confirmed that the manufactured pulse gun can generate pressure waves with transverse characteristics that can be controled for strength depending on the supply pressure.