• Title/Summary/Keyword: 연소법

Search Result 743, Processing Time 0.022 seconds

Numerical analysis of turbulent recirculating flow in swirling combustor by non-orthogonal coordinate transformation (비직교 좌표변환에 의한 선회연소기내 난류재순환유동의 수치해석)

  • 신종근;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1158-1174
    • /
    • 1988
  • A numerical technique is developed for the solution of fully developed turbulent recirculating flow in the passage of variable area using the non-orthogonal coordinate transformation. In the numerical analysis, primitive pressure-velocity finite difference equations were solved by SIMPLER algorithm with 2-equation turbulence model and algebraic stress model (ASM). QUICK scheme on the differencing of convective terms which is free from the inaccuracies of numerical diffusion has been applied to the variable grids and the results compared with those from HYBRID scheme. In order to test the effect of streamline curvatures on turbulent diffusion Lee and Choi streamline curvature correction model which has been obtained by modifying the Leschziner and Rodi's model is testes. The ASM was also employed and the results are compared to those from another turbulence model. The results show that difference of convective differencing schemes and turbulence models give significant differences in the prediction of velocity fields in the expansion region and outlet region of the combustor, however show little differences in the parallel flow region.

Development of Multidimensional Gap Conductance Model for Thermo-Mechanical Simulation of Light Water Reactor Fuel (경수로 핵연료 열-구조 연계 해석을 위한 다차원 간극 열전도도 모델 개발)

  • Kim, Hyo Chan;Yang, Yong Sik;Koo, Yang Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.157-166
    • /
    • 2014
  • A light water reactor (LWR) fuel rod consists of zirconium alloy cladding tube and uranium dioxide pellets with a slight gap between them. The modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding fuel behavior under irradiated conditions. Many researchers have been developing fuel performance codes based on finite element method (FE) to calculate temperature, stress and strain for multidimensional analysis. The gap conductance model for multi-dimension is difficult issue in terms of convergence and nonlinearity because gap conductance is function of gap thickness which depends on mechanical analysis at each iteration step. In this paper, virtual link gap element (VLG) has been proposed to resolve convergence issue and nonlinear characteristic of multidimensional gap conductance. In terms of calculation accuracy and convergence efficiency, the proposed VLG model has been evaluated for variable cases.

Analysis of Soot Particle Morphology Using Rayleigh Debye Gans Scattering Theory (RDG 산란 이론을 이용한 그을음 탄소 입자의 형상 분석)

  • Seo, Hyoungseock;Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.641-646
    • /
    • 2016
  • Soot particles generated by fossil fuel combustion normally have fractal morphology with aggregates consisting of small spherical particles. Thus, Rayleigh or Mie elastic light scattering theory is not feasible for determining the fractal properties of soot aggregates. This paper describes a detailed process for applying Rayleigh-Debye Gans (RDG) scattering theory to effectively extract the morphological properties of any nano-scale particles. The fractal geometry of soot aggregates produced from an isooctane diffusion flame was observed using ex situ transmission electron microscopy (TEM) after thermophoretic sampling. RDG scattering theory was then used to analyze their fractal morphology, and various properties were calculated, such as the diameter of individual soot particles, number density, and volume fraction. The results show indiscernible changes during the soot growth process, but a distinct decreasing trend was observed in the soot oxidation process. The fractal dimension of the soot aggregates was determined to be around 1.82, which is in good agreement with that produced for other types of fuel. Thus, it can be concluded that the value of the fractal dimension is independent of the fuel type.

Analysis of Boundary Layer in Solid Rocket Nozzle and Numerical Analysis of Thermal Response of Carbon/Phenolic using Finite Difference Method (고체 로켓 노즐의 경계층 해석과 유한차분법을 이용한 탄소/페놀릭의 열반응 해석 연구)

  • Seo, Sang Kyu;Hahm, Hee Cheol;Kang, Yoon Goo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.36-44
    • /
    • 2018
  • The thermal response of carbon/phenolic used in a solid rocket nozzle liner was analyzed. In this paper, the numerical analysis of the thermal response of carbon/phenolic consists of (1) the integration equation of the boundary layer to obtain the convective heat transfer coefficient of the combustion gas on the rocket nozzle wall and (2) 1-D finite difference method for heat conduction of carbon/phenolic to calculate the ablation, char, and temperature. The calculated result was compared with the result of a blast-tube-type test motor. It is found that the calculated result shows good agreement with the thermal response of the test motor, except at the vicinity of the throat insert.

The Analysis on the Effects of Hygrothermal Aging to THPP Using DSC and XPS (DSC와 XPS를 통한 수분노화가 THPP 점화제에 미치는 영향 분석)

  • Oh, Juyoung;Kim, Yoocheon;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.79-92
    • /
    • 2019
  • Titanium hydride potassium perchlorate (THPP) is one of the commonly utilized pyrotechnic materials in aerospace industries. The current study elucidates the effects of hygrothermal aging on the combustion of THPP experimentally. First, applying the Differential Scanning Calorimetry (DSC) and isocoversional method, both the delay of reaction start and decrease in maximum reaction rate were observed. The kinetics parameters tended to fluctuate depending the thermal reaction or intermediate product formation of THPP. Also, the oxidants decomposition and fuel oxidation phenomenon were discovered by X-ray photoelectron spectroscopy (XPS). The experimental heat from DSC data were verified as reasonable by comparing with the theoretical heat obtained utilizing both THPP formulation from XPS and NASA Chemical Equilibrium with Applications (CEA). Both data had identical variation trend, which expecially had the highest heat value at 10 weeks aged sample.

Study on the effective response method to reduce combustible metal fire (금속화재 위험감소 방안에 관한 이론적 연구)

  • Nam, Ki-Hun;Lee, Jun-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.600-606
    • /
    • 2018
  • A class D fire or combustible metal fire is characterized by the presence of burning metals. Only certain metals or metal compounds are flammable, including sodium and lithium. General fire extinguishing agents, such as dry chemical powder, water-based fire extinguish agents, and carbon dioxide, cannot be used in class D fires. This is because these agents cause adverse reactions or are ineffective. In addition, the amount of usage of combustible metals is increasing due to continuous development of the semiconductor and fuel cell industries. Despite this, Korea does not have standards and laws related to combustible metal fires. This paper suggests directions of the class D fire management policies to reduce the class D fire risk and impact by analyzing the standards and laws related to class D fires and combustible metal fire cases. The factors to make laws on class D fire prevention and response systems, and management system of dry sand were determined. These results may be used to help reduce the risk of class D fires and improve the response abilities.

Study on the Short Resistance and Shorting of Membrane of PEMFC (PEMFC 고분자 막의 Short 저항 및 Shorting에 관한 연구)

  • Oh, Sohyeong;Gwon, Jonghyeok;Lim, Daehyeon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.6-10
    • /
    • 2021
  • The shorting resistance (SR) of the PEMFC(Proton Exchange Membrane Fuel Cell) polymer membrane is an important indicator of the durability of the membrane. When SR decreases, shorting current (SC) increases, reducing durability and performance. When SR becomes less than about 0.1 kΩ·㎠, shorting occurs, the temperature rises rapidly, and MEA(Membrane Electrode Assembly) is burned to end stack operation. In order to prevent shorting, we need to control the SR, so the conditions affecting the SR were studied. There were differences in the SR measurement methods, and the SR measurement method, which improved the DOE(Department of Energy) and NEDO(New Energy and Industrial Technology Development Organization) method, was presented. It was confirmed that the SR decreases as the relative humidity, temperature and cell compression pressure increase. In the final stage of the accelerated durability evaluation process of the polymer membrane, SR rapidly decreased to less than 0.1 kΩ·㎠, and the hydrogen permeability became higher than 15 mA/㎠. After dismantling the MEA, SEM(Scanning Electron Microscope) analysis showed that a lot of platinum was distributed inside the membrane.

Study on the Improvement of Flame Retardancy of Bamboo Fiber Using Eco-Friendly Liquid Flame Retardant (친환경 액상 난연제를 이용한 대나무섬유의 난연화 연구)

  • Dong-Woo, Lee;Maksym, Li;Jung-il, Song
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.456-462
    • /
    • 2022
  • Since natural fibers are highly flammable, it is not easy to make them flame retardant. In this study, a liquid flame retardant based on phytic acid, APTES, and Thiourea, which are flame retardant candidates derived from nature, was prepared and its performance was verified through flame retardant treatment and flame retardancy evaluation of bamboo fibers. When a liquid flame retardant is used, it is possible to treat a large amount of natural fibers with flame retardant treatment. Nine types of flame-retardant treated bamboo fibers were prepared according to the Taguchi design of experiment method. Thereafter, vertical burning test and microcalorimeter test were performed for flame retardancy evaluation, and the surface of natural fibers before and after flame-retardant treatment was compared using scanning electron microscope. The results show that phytic acid has a significant effect on improving the flame retardancy of natural fibers. Through microstructure analysis, it was assumed that the phytic acid helps flame retardant to uniformly adhere to the surface of natural fibers. If such research results are utilized, it is possible to make a large amount of natural fibers high flammability in an eco-friendly way, which is expected to be advantageous for the application of prototypes.

An Optimization of Synthesis Method for High-temperature Water-gas Shift Reaction over Cu-CeO2-MgO Catalyst (고온수성가스전이반응 적용을 위한 Cu-CeO2-MgO 촉매의 제조방법 최적화)

  • I-Jeong Jeon;Chang-Hyeon Kim;Jae-Oh Shim
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.321-326
    • /
    • 2023
  • Recently, there has been a growing interest in clean hydrogen energy that does not emit carbon dioxide during combustion due to the increasing focus on carbon neutral. Research related to hydrogen production continues, and in this study, we applied waste-derived synthesis gas to the water-gas shift reaction to simultaneously treat waste and produce high-purity hydrogen. To enhance catalytic activity in the high-temperature water-gas shift (HT-WGS) reaction, magnesium was used as a support material alongside cerium. Cu-CeO2-MgO catalysts were synthesized, with copper acting as the active component for the HT-WGS reaction. A study on the catalytic activity based on the preparation method was conducted, and the Cu-CeO2-MgO catalyst prepared by impregnation method exhibited the highest activity in the HT-WGS reaction. The observed superior performance of the Cu-CeO2-MgO catalyst prepared through the impregnation method can be attributed to its significantly higher oxygen storage capacity and amount of active Cu species.

Stress and Relective Index of ${SiN}_{x}$ and ${SiN}_{x}/\textrm{SiO}_{x}/{SiN}_{x}$ Films as Membranes of Micro Gas Sensor (Micro Gas Sensor의 Membrane용 ${SiN}_{x}$막과 ${SiN}_{x}/\textrm{SiO}_{x}/{SiN}_{x}$막의 응력과 굴절율)

  • Lee, Jae-Seok;Sin, Seong-Mo;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.7 no.2
    • /
    • pp.102-106
    • /
    • 1997
  • Micro gas sensors including thin film catal) tic type require stress-free memhrancs for etch stop of Si anisotropic etching and sublayer of sensing elements hecause stress is one of the main factors affecting breakdown of thin membranes. This paper reports the effects of deposition conditions on stress and refractive index of $SiN_{x}/SiO_{x}/(NON)$ films deposited by low pressure c11ernic;rl vapor deposition(L, t'CVI)) 2nd reactve sputtering. In the case of I.PCVI1, the stresses of $SiN_{x}$ and NON films arc $7.6{\times}10^{8}dyne/cm^2$ and $3.3{\times}10^{8}dyne/cm^2$, respectibely, and the refractive indices are 3.05 and 152, respectively. In the cxse oi the sputtered SiN, , compressi\e stress decreased in magnitude and then turned to tensility as increasing proc, ess pressure by lmtorr to 30mtorr and cicreasmg applied power density by $2.74W/cm^2$ to $1.10W/cm^2$. The hest value of film stress obt;~ined under condition of lOmtorr and $1.37W/cm^2$ in this' experiment was $1.2{\times}10^{9}dyne/cm^2$ cnnipressive. The refr~ict~ve index decreased from 2 05 to 1 89 as decreasing applied power density by lnitorr to 3Orntorr and increasing process pressure hy $2.74W/cm^2$ to $1.10W/cm^2$. Stresses of films deposited by both LPCVL) and sputtering decreased as incre;lsing temperature and showed plastic behavior as decreasing temperature.

  • PDF