• Title/Summary/Keyword: 연성 진동 특성

Search Result 135, Processing Time 0.03 seconds

Vibration Characteristics of CD and DVD Disks (CD 및 DVD 디스크의 진동 특성)

  • 이승엽;임효석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.998-1003
    • /
    • 2003
  • The aerodynamically excited vibration and natural frequency of rotating CD and DVD disks are analytically and experimentally studied in this paper The theoretical analysis uses a fluid-structure model where the aerodynamic effects are represented in terms of elastic, lift and damping components. The explicit expression on natural frequency of the air coupled disk is obtained as functions of the three aerodynamic coefficients. The experiments performed using a vacuum chamber and CD/DVD disks rotating in vacuum, open air and enclosure give three main results. One is that the aerodynamic effect by the surrounding air reduces the natural frequencies and critical speeds of the vibration modes. The second is that natural frequency of disks rotating in open air is larger than that in enclosure. Finally, it is shown that the disk vibration is reduced as the gap between the disk and the rigid wall decreases.

  • PDF

Numerical Evaluation of Boundary Effects in the Laminar Shear Box System (층 분할된 연성전단상자의 경계효과에 관한 수치해석적 분석)

  • Kim, Jin-Man;Ryu, Jeong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.35-41
    • /
    • 2008
  • Laminar-shear-boxes are widely used to simulate free-field seismic ground response by using a l-g shaking table or geo centrifuge in geotechnical earthquake engineering. This study numerically modeled and compared the ground responses in the free field, rigid box, and laminar shear box by using a 3-D FEM program. It is found from the numerical simulations that the laminar shear box can simulate the free field ground movement more precisely than the rigid box. However, the laminar shear box underestimated the surface acceleration of the free field ground. It also showed low-frequency characteristics probably because the stiffness and inertia effect of surrounding ground are neglected.

High Frequency Vibration Analysis of Arrayed Panel Structures Using a Ray Tracing Method (레이 추적 기법을 이용한 연속 평판 구조물의 고주파수 진동해석)

  • 채기상;이정권;전재진
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.32-39
    • /
    • 1999
  • In this paper, the characteristics of the ray tracing method (RTM) based on the cylindrical wave are discussed for the high frequency vibration analysis of two-dimensional structures. A ray tube describing the emanating cylindrical wave is used to derive the governing equation for incident reflected, and transmitted ray tubes which satisfies the condition at the coupled boundary. The suggested ray model is applied to panel array structures, and the predicted results for 2-panel, 3-panel, and 4-panel array structures are compared to those by Statistical energy analysis (SEA) and Wave intensity analysis(WIA). More enhanced prediction was obtained compared to the SEA, and similar prediction performance was observed to the WIA. Additionally, the RTM has a novel feature that it can estimate the spatially smoothed distribution of vibration energy and vibration intensity. It is expected that the present RTM can be used as one of the useful tools for the high frequency vibration analysis of two-dimensional coupled structures.

  • PDF

Effect of Check Valve Characteristics on Flow Rate of the Small Piezoelectric-Hydraulic Pump (체크밸브 특성이 소형 압전유압펌프 유량에 미치는 효과)

  • Nguyen, Anh Phuc;Hwang, Jai-Hyuk;Hwang, Yong-Ha;Bae, Jae-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.54-68
    • /
    • 2018
  • The objective of this study is to analyze the effect of dynamic characteristics of the check valve applied to the small piezoelectric-hydraulic pumps on flow rate formation. The flow rate of the piezoelectric-hydraulic pump is a key factor in the formation of the load pressure to operate the brake system. At this time, the natural frequency of the check valve operating in the fluid has a great influence on the formulation of the flow rate of the piezoelectric-hydraulic pump. In addition, the natural frequency of the check valve is affected by the gap between the check valve and the pump seat. In this study, the natural frequency of the check valve according to the gap between the check valve and the pump seat was calculated through the fluid-structure interaction analysis. The flow rate obtained from the simulation result was verified by comparing it with the result from the flow rate experiment using the developed piezoelectric-hydraulic pump.

The Effects of the Boundary Shapes on the Structural-acoustic Coupled System (다양한 경계 형상에 따른 구조-음향 연성계의 음향특성)

  • 김양한;서희선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.718-725
    • /
    • 2004
  • If a wall separates the bounded and unbounded spaces, then the wall’s role in transporting the acoustic characteristics of the two spaces is not well defined. In this paper, we attempted to see how the acoustic characteristics of two spaces are really affected by the spatial characteristics of the wall. In order to understand coupling mechanism, we choose a finite space and a semi-infinite space separated by the flexible or rigid wall and an opening. A volume interaction can be occurred in structure boundary and a pressure Interaction can be happened in the opening boundary. For its simplicity, without loosing generality, we use rather simplified rectangle model instead of generally shaped model. The source impedance is presented to the various types of boundaries. The distributions of pressure and active intensity are also presented at the cavity- and structure-dominated modes. The resulting modification, shifts of modal frequencies and changing of standing wave patterns to satisfy both coupled boundary conditions and governing equations, are presented.

A Study on Vibration Characteristic of Stiffened Plates with Fluid Coupling Effect inside a Tank (탱크 내부 유체 연성 효과에 의한 보강판의 진동 특성 연구)

  • Jeong, Woo-In;Kwon, Jong-Hyun;Kim, Mun-Su
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.56-62
    • /
    • 2015
  • In ship structure, many parts are in contact with inner or outer fluid as stern, ballast and oil tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these tanks in contact with fluid are significantly affected by fluid coupling effect. Therefore it is important to exactly predict vibration characteristics of tank structure. In order to estimate the vibration characteristics, the fluid-structure interaction(FSI) problem should be solved precisely. But it is difficult to estimate exactly the magnitude of the fluid coupling effect because it has some problems such as a fluid-structure interaction, influence by the free surface, vibration modes of structural panels and depth of water. In this paper, with fluid coupling effect, the effect of structural constraint between panels on the vibration characteristics are investigated numerically and discussed.

  • PDF

Underwater Structure-Borne Noise Analysis Using Finite Element/Boundary Element Coupled Approach (유한요소/경계요소 연성해석을 통한 수중 구조기인소음 해석)

  • Lee, Doo-Ho;Kim, Hyun-Sil;Kim, Bong-Ki;Lee, Seong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.789-796
    • /
    • 2012
  • Radiated noise analysis from a ship structure is a challenging topic owing to difficulties in the accurate calculation of the fluid-structure interaction as well as owing to a massive degree of freedom of the problem. To reduce the severity of the problem, a new fluid-structure interaction formulation is proposed in this paper. The complex frequency-dependent added mass and damping matrices are calculated using the high-order Burton-Miller boundary integral equation formulation to obtain accurate values over all frequency bands. The calculated fluid-structure interaction effects are added to the structural matrices calculated by commercial finite element software, MSC/NASTRAN. Then, the impedance and underwater radiation noise due to an excitation of structure are calculated. The present formulation is applied to a ship to calculate the underwater radiated noise.

Random Vibration and Harmonic Response Analyses of Upper Guide Structure Assembly to Flow Induced Loads (유체유발하중을 받는 상부안내구조물의 랜덤진동 및 조화응답해석)

  • 지용관;이영신
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.59-68
    • /
    • 2002
  • The cylindrical Upper Guide Structure assembly of the reactor intervals wish the Core Support Barrel and the Inner Barrel Assembly is subjected to flow induced loads horizontally which include random pressure fluctuation due to turbulent flow and pump pulsation pressures. The purpose of this papers is to perform random vibration and harmonic response analyses fort flow induced loads. The dynamic response characteristics due to random turbulence and pump pulsation loads were evaluated using the lumped mass beam model. Especially the model considered the annulus effects due to water gaps existing between cylindrical structures such as the Upper Guide Structure Barrel, the Core Support Barrel, and the Inner Barrel Assembly. The effect of the Inner Barrel Assembly inside the Upper Guide Structure assembly was studied. The peak dynamic responses lot each loading condition due to the addition of IBA were affected by the natural frequencies of the structures. Therefore the peak dynamic responses of the structures should be conservatively obtained from evaluation of dynamic analysis for various loading conditions.

An Analytical Investigation on Vibrational Characteristics of Turbo Compressor (터보압축기의 진동 특성에 관한 해석적 연구)

  • 이형우;이동환;박노길
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1069-1077
    • /
    • 1998
  • A dynamic model of turbo compressor having helical gear pairs is developed. The model accounts for the shaft and bearing flexibilities, gyroscopic effects and the force couplings among the transverse, torsion. and axial motions due to gearings. For the mode analysis of turbo compressor, a transfer matrix method is used. The excitation sources caused by the mass unbalances of the rotors and misalignment of the shafts, the transmitted errors of the gearings. and the vane passing frequencies of the Impeller are studied qualitatively. By introducing the perturbation method, the generated forcing frequencies are defined and devided into three groups. With the field data, two critical speeds are analytically found and the corresponding modal characteristics are examined.

  • PDF

Vibration Characteristics of Rotating Disks with Aerodynamic Effect (I) - Theoretical Analysis - (공기 유동 효과를 고려한 회전 디스크의 진동 특성 (I) - 이론적 해석 -)

  • Lee, Seung-Yop;Lim, Hyo-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.127-134
    • /
    • 2008
  • The aerodynamically excited vibration and natural frequency of rotating disks are analytically studied in this paper. The theoretical analysis uses a fluid-structure model where the aerodynamic effects are represented in terms of elastic, lift and drag forces. The explicit expressions on natural frequencies of the air coupled disk are obtained as functions of the aerodynamic coefficients. for the three cases where the disk rotates in three different cases (in vacuum, in open air without enclosure, and close to rigid wall). The theoretical results give that the natural frequencies of rotating disks in air are smaller than those in vacuum, because the effect of the added fluid mass decreases the frequencies. This paper also proposes an analytical method to predict the flutter speed of a rotating disk.