• Title/Summary/Keyword: 연성설계

Search Result 754, Processing Time 0.025 seconds

Study on Concept Design of the Motor Actuator of Outside Rear-View Mirror by Incomplete Coupled Design (불완전연성설계의 특성을 갖는 사이드미러 액추에이터의 개념설계에 관한 연구)

  • Choi, Jun-Ho;Lee, Kun-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1843-1848
    • /
    • 2010
  • This paper presents an analysis of the design hypothesis of integration of parts from the viewpoint of axiomatic design. In parts integration, parts with the same functions are integrated into a single part. For the analysis, a motor actuator of an outside rear-view mirror with the type of an uncoupled design was used. The parts within the actuator are checked for determining the possibility of integration, by adopting the design hypothesis of integration of parts. The design hypothesis of integration of parts is based on a type of coupled design. However, the type of incomplete coupled design that resembles the type of an uncoupled design would be better than the type of a coupled design.

Ductility Confinement of RC Rectangular Shear Wall (장방형 철근 콘크리트 전단벽의 연성 보강)

  • 강수민;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.530-539
    • /
    • 2002
  • In designing the boundary confinement of shear walls, the current design provisions and recommendations are empirical and prescriptive; they specify a certain confinement length and details, regardless of the actual requirement of ductility Therefore, they are inappropriate to the performance based-design. The purpose of the present study is to develop a ductility design method that Is applicable to the performance based-design of shear wall. For the purpose, experimental studies were performed to investigate variations in the ductility of shear walls with the length of the boundary confinement. Five specimens modeling the compressive zone of cross sections with different confinement area were tested against eccentric vertical load. Through the experimental studies, strength, ductility, and failure mode of the compression zone were investigated. In addition, nonlinear numerical analyses for the overall cross-sections of shear wall were performed to investigate variations of the stress and strain profiles with the length of compression zone. On the basis of the experimental and numerical studies, a ductility design method for shear wall was developed. By using the proposed design method, for a given ductility demand, the area of lateral confinement and corresponding reinforcement ratio can be precisely determined so that the ductile behavior and economical design are assured.

No Collapse Design for Typical Bridges (일반교량의 붕괴방지설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.163-172
    • /
    • 2014
  • The purpose of earthquake resistant design for typical bridges is the No Collapse Design and the Earthquake Resistant Design Part of Roadway Bridge Design Code provides a design process to construct the Ductile Failure Mechanism for the bridge structure. However, if it is not practical to provide the Ductile Failure Mechanism due to structure types or site conditions, the Brittle Failure Mechanism is an alternative way to get the No Collapse Design. As well as the existing design process constructing the Ductile Failure Mechanism, the Earthquake Resistant Design Part provides a ductility-based design process as an appendix, which is prepared for bridges with reinforced concrete piers. According to the new design process, designer determines a required response modification factor for substructure and transverse reinforcement for confinement therefrom. In this study, a typical bridge with steel bearing connections and reinforced concrete piers is selected for which the existing as well as the ductility-based design processes are applied and different results from the two design processes are identified. Based on the results, an earthquake resistant design procedure is proposed in which designers should consider the two design processes.

Safety of Ductility Demand Based Seismic Design for Circular RC Bridge Columns (원형 철근콘크리트 교각에 대한 연성도 내진설계법의 안전성)

  • Lee, Jae-Hoon;Hwang, Jung-Kil;Choi, Jin-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.193-202
    • /
    • 2008
  • Seismic design for bridge columns of the current Korea Highway Bridge Design Specifications which adopt full ductility design concept results in reinforcement congestion problems in construction site. It is due to large amount of confining steel is required even for small ductility demand which is a normal case in low and moderate seismicity regions like Korean peninsular. Therefore a new seismic design method based on limited ductility concept was proposed, which is called ductility demand based design method. It uses the new confining steel design equation considering ductility demand and aspect ratio of the column as well as material strength. The purpose of this study is to verify safety of the ductility demand based design method by the confining steel design equation. Eighty nine circular column test results are selected and investigated in terms of ductility factor and its safety. The safety factor for the circular column test results ranges between 1.11 and 3.98, and the average is 1.90. In this paper, the basic concept and detailed design procedure of the ductility demand based design method are also introduced as well as the investigation of the safety with respect to the major variables in confining steel design.

Compliant Mechanism Design using a New Monolithic Approach Considering Fluid-Structure Interaction Annual Conference (모노리틱 유체-구조 연성 해석을 이용한 컴플라이언트 미케니즘 위상 최적 설계)

  • Yoon, Gil-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.574-577
    • /
    • 2010
  • 이번 연구에서는 저속 비압축성 유체-구조 연성을 고려한 위상 최적화을 위해 새로운 모노리틱 해석을 개발한다. 이 새로운 해석 기법에서는 기존의 유체-구조 연성 시스템 해석 기법에서 유체와 구조 영역을 분리하고 연성 조건을 만족시키는 것과 다르게 하나의 일치된 해석 방정식을 유체 영역과 구조 영역에 동일하게 적용한다. 또한, 경계조건을 만족시키기 위하여 단일화 된 해석 방정식의 물성치를 바꾸어주는 새로운 방식을 제시하였다. 이 새로운 방법에서는 유체, 구조 영역을 분리하지 않고 Navier-Stoke's 방정식과 선형 탄성식을 동시에 사용하였다. 또한, 유체-구조 영역이 연성 해석 중 변화하는 것을 반영하기 위하여 구조 변위를 이용하여 Deformation tensor를 계산하였고 이를 이용하여 변형 후에서의 Navier-Stoke 방정식의 미분을 계산하는 방법을 제안하였다. 그리고, 정상 상태 유체를 가정하고 속도에 비례하는 마찰힘인 Darcy's force 항을 Navier-Stoke 방정식에 넣고 이 마찰 힘의 크기를 변화시킴으로 해서 유체 방정식에서의 연성 경계 조건을 만족시켰다. 선형 탄성 방정식에서 Divergence이론을 이용해서 경계에서 작용하는 외력이 하는 일을 내부 시스템에 하는 일로 계산하였다. 개발된 모노리스 해석 방법을 이용하여 저속 비압축성 유체가 구조에 미치는 압축력을 계산하였고 이용하여 컴플라이언트 미케니즘을 설계하였다.

  • PDF

Earthquake Resistance Design for a Typical Bridge Substructure (일반교량 하부구조의 내진설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.283-288
    • /
    • 2011
  • For the earthquake resistance design designer should provide that structural yielding process is principally designed with the ductile failure mechanism. In order to get the ductile failure mechanism for typical bridges, pier columns yielding should occur before that of connections. However domestic bridge design with unnecessary stiff substructure leads to unnecessary seismic loads and makes it difficult to get the ductile failure mechanism. Such a problem arises from the situation that earthquake resistant design is not carried out in the preliminary design step. In this study a typical bridge is selected as an analysis bridge and design strengths for connections and pier columns are determined in the preliminary design step by carrying out earthquake resistant design. It is shown through this procedure that it is possible to get the ductile failure mechanism with structural members determined by other design.

Deformability of RC Beam-Column Assembles (철근콘크리트 보-기둥 접합부의 연성능력)

  • Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.193-196
    • /
    • 2008
  • This paper proposes a method to predict the ductility capacity of reinforced concrete beam-column joints failing in shear after the formations of plastic hinges at both ends of the adjacent beams. The current design code divides joints into two categories: Type 1 for structures in non seismically hazard area and Type 2 in seismically hazard area. While there are many researches related to joint shear strength in Type 1, those in regard to joint ductility capacity of Type 2 are scarce. This paper classified the ductility capacity of beam-column joints into column, joint panel, and beam deformability. Since a brittle failure such as shear or bond failure in the columns must be avoided, column deformability was calculated by elastic analysis. The plastic hinges of the adjacent beams affect joint deformability. Therefore, the prediction of joint deformability was calculated with consideration to the degradation of the diagonally compressed concrete due to the strain penetration.

  • PDF

Shape Design Optimization of Structure-Fluid Interaction Problems using NURBS Surfaces (NURBS 곡면을 이용한 구조-유체 연성문제의 형상 최적설계)

  • Jang, Hong-Lae;Kim, Min-Geun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.508-511
    • /
    • 2010
  • 본 논문에서는 정상상태 유체-구조 연성문제를 연속체 기반으로 정식화하고 유한요소법을 이용하여 완전 연성된 해를 구하였다. 대 변형을 고려하기 위하여 토탈 라그란지안 정식화를 사용하였으며 유체 및 구조의 비선형성이 고려되었다. 유체와 구조 영역의 형상을 NURBS 곡면을 이용하여 매개화하여 표현하였으며, 형상 최적화를 위해 효율적인 설계민감도 해석법인 애조인 기법을 이용하여 압력, 속도, 변위 등에 대한 설계민감도를 구하였다. 이를 이용하여 최소 컴플라이언스를 갖게 하는 구조물 내부의 유체영역의 설계 등의 수치예제를 통하여 개발된 방법론의 타당성을 확인하였다.

  • PDF

Vibration Control of Semi-active Suspension Considering the Modal Coupling Effect (모드 연성효과를 고려한 반능동형 현가장치의 진동제어)

  • 오재응;이정윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.430-442
    • /
    • 1992
  • 본 연구에서는 자동차의 여러 모드 사이에 존재하는 연성항의 비연성을 위한 능동 제어력을 계산하여 연성항이 승차감에 미치는 영향을 살펴보고, 이 연성항을 비 연성화하기 위한 제어력을 계산하였으며, 현가장치의 반능동 제어에 적용하였다. 또 한 새로운 민감도 이론식을 제안하여 7자유도 현가계에 적용하고 시뮬레이션을 통하여 특성변화예측을 하였다.

Optimum Design of Braced Three Dimensional Square Steel Frame Structures Considering Arrangement of Major-minor axis of Column (기둥의 강·연성축을 고려한 브레이싱된 정방형 3차원 강골조 구조물의 최적설계)

  • Kim, Ki-Wook;Park, Moon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.259-267
    • /
    • 2004
  • Most steel frame structures are constructed to one side without considering the arrangement of major-minor axis of column and bracing. This research presents more safety and economic efficiency can be obtained by just rearrangement of major-minor axis. Because most of steel-frame structures are excessively designed with Allowable Stress Design, and it needs to be changed to other specifications. The arrangement of major-minor axis of column is partly referred in AISC-LRFD, but still insufficient. This study compared with the each result from rearrangement of major-minor axis of column, arrangement of bracing, the connecting method of bracing, and consequence with different specifications. Moreover it demonstrated the direction of more economically optimized design.