• Title/Summary/Keyword: 연성도 평가

Search Result 872, Processing Time 0.029 seconds

Capacity of Concrete Filled Carbon Tube Columns Based on the Comparison of Ductility and Energy Dissipation Capacity (연성도 및 에너지 소산능력 비교에 따른 콘크리트충전 탄소섬유튜브 기둥의 성능)

  • Lee, Kyoung-Hun;Hong, Won-Kee;Lee, Young-Hak;Kim, Hee-Cheul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.29-35
    • /
    • 2007
  • Flexural capacity estimation test of concrete filled carbon tube (CFCT) column under the cyclic lateral load was carried out in this study. Thickness of carbon tube and winding angles of carbon fiber were chosen as test parameters and two types of column with square and circular sections were manufactured. To act axial and lateral load, three dynamic actuators were used and all specimens were made with actual size. Flexural stiffness, ability of deformation, energy dissipation capacity and ductility behavior. of CFCT column were analyzed with test data.

Evaluation of Ductility Capacity of Reinforced Concrete Bridge Columns Subject to Cyclic Loading Using Flexibility-Based Fiber Element Method (유연도법 섬유요소모델에 의한 반복하중을 받는 철근콘크리트 교각의 연성능력 평가)

  • 고현무;조근희;조호현
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.11-21
    • /
    • 2002
  • The evaluation of displacement ductility is performed by direct method through tracking the inelastic hysteretic behavior of RC bridge columns subject to cyclic loading using a flexibility-based fiber element mode. To reasonably track the inelastic behavior until the RC bridge column reaches its ultimate state, the average stress-average strain relations and joint elements, which agree well with experiments, are modified and applied considering the tension stiffening behavior and discontinuous displacement between the column and its base. In addition the evaluation of displacement ductility is performed by a direct method easily applicable to numerical analysis. Locations for the integration points, values for the post-crushing concrete strength and low-cycle fatigue failure of longitudinal reinforcement that affect the calculation of yielding and ultimate displacements are proposed for the application to flexibility-based fiber element model. Since less than 10% of error occurs during the displacement ductility analysis, the yielding and ultimate displacements evaluated by the applied analysis method and model appear to be valid.

Comparison and Review of Design Codes for Moment Redistribution (모멘트 재분배에 관한 각 국의 설계기준 비교.검토)

  • Cheon, Ju-Hyoun;Park, Jae-Geun;Lee, Sang-Cheol;Oh, Myung-Seok;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.133-136
    • /
    • 2008
  • Moment redistribution problem that reflects plasticity concept is foundation of limit state design and it has been interested to design engineers and researchers for a long time, because it enables the reasonable estimation of strength of structures through amount of reinforcement control about negative moment in support. Many researchers find that moment redistribution closely related to ductility of degree of structure and there are a lot of difficulties in achieving the reliable experimental results because of a lot of restriction of experiment. So, studies are achieved for indirect estimate methods about ductility ability of structures. Each design standards limits that the degree of redistribution of bending moment is based on the measurement of ductility of structure, and it shows conservative results. In this study, with these results, present the basic data for reasonable strength estimation methods and allowed moment redistribution of reinforced concrete continuous beams.

  • PDF

Strength and Deformation Characteristics of Steel Fiber Reinforced Columns (강섬유 보강 기둥의 강도 및 변형 특성)

  • 장극관;이현호;양승호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.49-57
    • /
    • 2002
  • As composite materials, the addition of steel fiber with concrete significant)y improves the engineering properties of structural members, notably shear strength and ductility. Flexural strength, fatigue strength, and the capacity to resist cracking are also enhanced. Especially the strengthening effect of steel fiber in shear is to prevent the brittle shear failure. In this study, shear-strengthening effect of steel fiber in RC short columns were investigated from the literature surveys and 10th specimem's member test results. From the test results, following conclusions can be made; the maximum enhancement of shear-strengthening effect can be achieved at about 1.5 % of steel fiber contents, shear strength and ductility capacity were improved remarkably in comparison to stiffness and energy dissipation capacity in steel fiber reinforced concrete.

Evaluation of Flexural Ductility of Negative Moment Region of I-Girder with High Strength Steel (고강도 강재 적용 I-거더의 부모멘트부 휨연성 평가)

  • Joo, Hyunsung;Moon, Jiho;Choi, Byung-Ho;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.513-523
    • /
    • 2010
  • For continuous I-girder bridges, a large negative bending moment is generated near pier region so that plastic hinge is first formed at this point. Then, the bending moment is redistributed when the I-girder has enough flexural ductility (or rotational capacity). However, for I-girder with high strength steel, it is known that the flexural ductility is considerably decreased by increasing the yield strength of material. Thus, it is necessary to conduct a study for guaranteeing proper flexural ductility of I-girder with high-strength steel. In this study, the evaluation of flexural ductility of negative moment region of I-girder with high strength steel where yield stress of steel is 680 MPa is presented based on the results of finite element analysis and experiment. From the results, it is found that the flexural ductility of the I-girder is significantly reduced due to the increase of elastic deformation and the decrease of plastic deformation ability of the material when the yield strength increases. In this study, the method to improve the flexural ductility of I-girder with high strength steel is proposed by an unequal installation of cross beam and an optimal position of cross beam is also suggested. Finally, the effects of the unequal installation of cross beam on the flexural ductility are discussed based on the experimental results.

Seismic Performance of Concrete-Filled Steel Piers Part I : Quasi-Static Cyclic Loading Test (강합성교각의 내진성능평가 Part I : 준정적 반복재하실험)

  • 조창빈;서진환;장승필
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.9-19
    • /
    • 2002
  • Steel piers and concrete-filled steel(CFS) piers, in spite of reasonable strength, high ductility, small section, and fast construction, have not been considered as one of alternatives to RC piers even in the highly populated urban area where aseismic safety, limited space and fast construction are indispensably required. This paper, the first of two companion papers for the seismic performance of steel and CFS piers, tests steel and CFS piers under quasi-static cyclic loading to estimate their ductility and strength. Additional details such as rebars and base ribs are added to increase the ductility of a concrete-filled steel pier with minimum additional cost. Also, simplified numerical analyses using nonlinear spring and shell elements are examined for the estimation of the ductility and strength of concrete-filled steel piers and a steel pier. The result shows that concrete-filled steel peirs have higher energy absorption, i.e., ductility and strength than those of steel pier and increasing bonding between in-filled concrete and lower diaphragm, and the improved details of stress concentrated region would be important for the ductility and strength of a pier. Numerical results show that simplified modeling with nonlinear springs and shells has potential to be effective modeling technique to estimate the seismic performance of a concrete-filled steel pier.

Fluid-structure interaction analysis on a low speed 200 W-class gyromill type vertical axis wind turbine rotor blade (200 W급 자이로밀형 수직축 풍력터빈 로터 블레이드 유체-구조 연성 해석)

  • Cho, Woo-Seok;Choi, Young-Do;Kim, Hyun-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.344-350
    • /
    • 2013
  • The purpose of this study is to examine the structural stability of a low speed 200 W class gyromill type vertical axis wind turbine system. For the analysis, a commercial code is adopted. The pressure distribution on the rotor blade surface is examined in detail. In order to perform unidirectional FSI(Fluid-Structure Interaction) analysis, the pressure resulted from CFD analysis has been mapped on the surface of wind turbine as load condition. The rotational speed and gravitational force of wind turbine are also considered. The results of FSI analysis show that the wind turbine reveals an enough structural margin. The maximum structural displacement occurs at trailing edge of blade and the maximum stress occurs at the strut.

Seismic performance evaluation of circular composite columns by shaking table test (진동대 실험을 통한 원형 합성 기둥의 내진 성능 평가)

  • Shim, Chang-Su;Chung, Young-Soo;Park, Ji-Ho;Park, Chang-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.71-81
    • /
    • 2007
  • For the design of composite bridge piers, detail requirements for the reinforcements is not clear to satisfy the required seismic performance. Composite bridge piers were suggested to reduce the sectional dimensions and to enhance the ductility of the columns under earthquake loadings. In this paper, five specimens of concrete encased composite columns of 400mm diameter with single core steel were fabricated to investigate the seismic performance of the composite columns. Shaking table tests and a Pseudo-Dynamic test were carried out and structural behavior of small-scaled models considering near-fault motions was evaluated. Test parameters were the pace of the transverse reinforcement, lap splice of longitudinal reinforcement and encased steel member sections. The displacement ductility from shaking table tests was lower than that from the pseudo-dynamic test. Limited ductile design and 50% lap splice of longitudinal reinforcement reduced the displacement ductility. Steel ratio showed significant effect on the ultimate strength. Lap splice and low transverse reinforcements reduced the displacement capacity. The energy dissipation capacity of composite columns did not show significant difference according to details.

Flexural Behavior of Highly Ductile Cement Composites Mimicking Boundary Conditions of Shellfish Skin Layer (패류 껍질층의 경계면을 모방한 고연성 시멘트 복합재료의 휨 거동)

  • Kwon, Ki-Seong;Chun, Jae-Yeong;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.108-115
    • /
    • 2020
  • In this study, the flexural performance of Highly Ductile Cement Composites(HDCC) mimicking boundary conditions of shellfish skin layer was evaluated. To improve ductility by mimicking the boundary skin layer structure of shellfish, the method of stratification by charging between precast panels using HDCC and the method of distributing PE-mesh to the interface surface were applied. Evaluation of flexural performance of layered cement composite materials mimicking boundary conditions of shellfish skin layer resulted in increased ductility of all test specimens applied with stratified cross-section compared to typical bending test specimens. The layered method by inserting PE-mesh showed excellent ductility. This is most likely because the inserted PE-mesh made an interface for separating the layers while the HDCC pillars in the PE-mesh gave adhesion between layers.