신경 회로망에서 연상 메모리(Associative Memory)는 주어진 자료에 대해 정보를 저장하고 복원하는 알고리즘이다. 본 논문에서는 학습된 영상의 정확한 분류와 왜곡된 영상의 복원 및 분류를 위해 기존의 퍼지 연상 메모리 알고리즘을 개선하였다. 기존의 퍼지 연상 메모리는 학습 데이터와 학습 원본과 같은 입력에 대해 우수한 복원 성능을 보이나 학습 데이터의 수가 증가할수록 그리고 왜곡된 입력에 대해 정확히 출력할 수 없고 복원 성능도 저하된다. 따라서 본 논문에서는 기존의 퍼지 연상 메모리 알고리즘을 개선하여 왜곡된 입력에 대해서도 원본 학습 데이터를 정확히 출력하고 복원하는 개선된 퍼지 연상 메모리 알고리즘을 제안하였다.
포도 수확기를 개발하기 위해서는 포도 형상과 위치를 정확하게 파악하는 것이 필요하다. 신경회로망(Neural network)의 연상메모리(Associative memory)를 이용하여 포도 형상 정보를 인식하고자 한다. 신경회로망을 이용한 연상메모리는 학습 패턴(Learning pattern)을 학습한 후에 입력 패턴(Input pattern)으로부터 출력패턴을 얻는다. (중략)
본 논문에서는 데이터의 저장과 판독은 일반 SRAM과 같고 명령과 탐색을 수행하는 8비트 $\times16$ 워드 연상메모리(CAM: Content Addressable Memory)의 알고리즘과 하드웨어를 제시하였다. 설계된 연상메모리 칩은 5개의 기능별 블록(연상메모리 셀 어레이. 어드레스 디코더, 어드레스 인코터, 데이터 셀럭터, 감지 증폭기)으로 나누어서 설계하고 논리 및 회로 검증을 마친 후 3 um CMOS N Well공정을 이용하여 칩을 제작하였다
본 논문에서는 저해상도 및 저대비의 특성을 지니는 문자 영상으로부터 특징을 추출하고 연상메모리를 이용하여 대상 문자를 인식하는 방법을 소개한다. 저해상도 영상의 이진화 과정에서 발생할 수 있는 정보의 왜곡 현상을 피하기 위하여 입력 영상의 gradient 정보를 이용하여 특징을 추출한다 저해상도 일 저대비의 특성을 지니는 문자 영상의 경우 입력 영상에 noise가 존재하거나 충분한 정보가 포함되어 있지 않은 경우 특징벡터에 상당한 왜곡을 초래하게 된다. 손상된 특징을 복원하기 위하여 연상메모리를 이용한다. 인식하고자 하는 문자 영상들의 prototype 영상들을 이용하여 연상메모리의 weight matrix를 구성한다. weight matrix를 이용해서 입력 영상이 가지는 특징과 가장 비슷한 특징을 가지는 prototype 영상의 특징벡터를 생성함으로써 손상된 특징을 복원하게 된다. 제안된 시스템을 이용하여 실험한 결과 noise가 존재하거나 정보가 충분하지 않은 입력 영상에 대해서 비교적 놀은 인식률을 얻음을 볼 수 있었다.
선형적인 읽기와 쓰기 특성을 가지고 있는 승자전취메커니즘 방식의 아날로그 메모리를 구현하였다. 메모리의 읽기 동작은 연상메모리의 최적 함수 선택을 위하여 절대값 회로와 승자전취메커니즘 회로가 이용된다. 본 연구에서는 병렬의 고속 쓰기와 읽기 동작뿐만 아니라 고집적을 가능하게 하는 시스템 구성이 실현된다. 복수의 메모리 셀의 구현이 더 높은 집적도와 고속의 쓰기 읽기를 위하여 구현된다. 실시간 인식을 위하여 본 연구에서 사용된 함수는 이상적이며 메커니즘의 시뮬레이션을 위하여 MOSIS의 $1.2{\mu}$ 더블폴리 CMOS 공정 파라미터를 사용하였다.
셀룰라 신경회로망의 연상 메모리를 이용하여 시각적인 입력 데이터의 연산을 통하여 영상 패턴의 분류와 인식을 수행한다. 셀룰라 신경회로망은 일반적인 신경회로망과 같이 비선형 데이터의 실시간 처리가 가능하고, 세 포자동자와 같이 격자구조의 셀로 이루어져 인접한 셀과 직접 정보를 주고받는다. 응용 분야로는 최적화, 선형/비선형화, 연상 메모리, 패턴인식, 컴퓨터 비젼 등에 적용할 수 있다. 영상의 이미지 픽셀을 셀룰라 신경회로망의 셀에 대응하여 전체 이미지 영상을 모든 셀룰라 신경회로망의 셀에서 동시에 병렬로 처리할 수 있어 2-D 이미지 처리에 적합하다 본 논문은 셀룰라 신경회로망에 의한 연상 메모리 구조를 설계하고, 학습된 하중값 메모리에서 가장 적당한 하중값을 선택하여 학습된 영상과 정확히 일치하는 출력을 얻는 방법을 제시한다. 학습을 통한 연상 메모리 구현에는 각각의 뉴런에서 일정하지 않은 다른 템플릿을 사용한다. 각각의 템플릿은 뉴런들 간의 연결 하중값을 나타내고 학습011 따라 갱신된다. 학습방법으로는 템플릿 하중값 학습에 뉴런들 간의 연결 하중값을 조정하는 가장 단순한 규칙인 Hebb의 학습방법이 사용되었고 분류값 학습에 LMS 알고리즘이 사용되었다
본 연구에서는 아날로그 메모리를 이용한 DC-DC 컨버터 제어기를 설계하였다. 이 방식은 기존의 폐루프 방식의 컨버터 제어기가 안고 있는 안정도 문제를 근본적으로 해결하는데 기여하게 될 것이다. 본 연구에서 아날로그 메모리는 컨버터의 출력과 이에 대응되는 최적의 시비율 판단을 위한 연상메모리를 구현하는데 이용된다. 메모리의 읽기 동작은 연상메모리의 최적 함수 선택을 위하여 절대값 회로와 승자전취 메커니즘 회로가 사용되며, 병렬의 고속 쓰기와 읽기 동작뿐만 아니라 고집적을 가능하게 하는 시스템 구성이 제안된다.
본 논문에서는 Hopfield 신경회로망 모델에 기초한 bipolar 메모리 행렬을 광학적으로 실현하기 위해 수정된 모델에 대한 이론적 분석과 상용 LCTV를 이용한 Hopfield 연상메모리의 광학적 구현에 관하여 논하였다. 특히, 본 논문에서는 신경간의 연결인 메모리마스크를 처음으로 컴퓨터 그래픽과 연결된 LCTV 마스크를 사용하고 수정된 모델에서 시간에 따라 변하는 thresholding 값을 메모리 마스크에 한행을 추가해 광학적으로 얻을 수 있게 함으로서 Hopfield 모델에 기초한 광연산 메모리의 실시간 처리를 실현 하였다.
셀룰라 신경회로망의 연상 메모리를 이용하여 시각적인 입력 데이터의 연산을 통하여 영상 패턴의 분류와 인식을 수행한다. 셀룰라 신경회로망은 일반적인 신경회로망과 같이 비선형 데이터의 실시간 처리가 가능하고, 세포자동자와 같이 이 격자구조의 셀로 이루어져 인접한 셀과 직접 정보를 주고받는다. 응용 분야로는 최적화, 선형/비선형화, 연상 메모리, 패턴인식, 컴퓨터 비전 등에 적용할 수 있다. 영상의 이미지 픽셀을 셀룰라 신경회로망의 셀에 대응하여 전체 이미지 영상을 모든 셀룰라 신경회로망의 셀에서 동시에 병렬로 처리할 수 있어 2-D 이미지 처리에 적합하다. 본 논문은 셀룰라 신경회로망에 의한 연상 메모리 구조를 설계하고, 학습된 하중값 메모리에서 가장 적당한 하중값을 선택하여 학습된 영상과 정확히 일치하는 출력을 얻는 방법을 제시한다. 학습을 통한 연상 메모리 구현에는 각각의 뉴런에서 일정하지 않은 다른 템플릿을 사용한다. 각각의 템플릿은 뉴런들 간의 연결 하중값을 나타내고 학습에 따라 갱신된다. 학습방법으로는 템플릿 하중값 학습에 뉴런들 간의 연결 하중값을 조정하는 가장 단순한 규칙인 Hebb의 학습방법이 사용되었고 분류값 학습에 LMS 알고리즘이 사용되었다.
본 논문은 퍼지 인지 맵과 퍼지 연상 메모리를 사용하여 열과 온도에 관한 학생들의 과학개념 이해에서 발생되는 오인을 진단할 수 있는 오인 진단 모델을 제시한다. 오인 진단 모델에서 퍼지 인지 맵은 과학현상에 대한 학생들이 가지는 선입개념들과 오인들을 인과관계로 표현할 수 있다. 또한 개념간의 인과관계를 기억할 수 있는 퍼지 연상 메모리를 통하여 오인의 원인들을 진단한다. 본 연구는 기존의 학습 오인을 진단하는 규칙기반 전문가 시스템의 한계성을 극복할 수 있는 새로운 방법을 제공하며, 교육분야의 다양한 영역에서 학습자들의 학습 진단을 위한 지능형 개인교수 시스템으로 적용될 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.