• Title/Summary/Keyword: 연료 전환

Search Result 389, Processing Time 0.022 seconds

An Analysis on Causalities Among GDP, Electricity Consumption, CO2 Emission and FDI Inflow in Korea (한국의 경제성장, 전력소비, CO2 배출 및 외국인직접투자 유입 간 인과관계 분석)

  • Park, Chang-dae;Kim, Sung-won;Park, Jung-gu
    • Journal of Energy Engineering
    • /
    • v.28 no.2
    • /
    • pp.1-17
    • /
    • 2019
  • This article analyzes causal relationships among gross domestic product(GDP), electricity consumption, carbon dioxide($CO_2$) emission and foreign direct investments(FDI) inflow of Korea over the period from 1976 to 2014, using unit root test, cointegration test, and vector error correction model(VECM). As the results, this article found (1) a long-run bi-directional causality between GDP and electricity consumption, which may imply a negative impact of electricity consumption-saving policy on economic growth, (2) uni-directional short- and long-run causalities running from $CO_2$ emission to GDP, and a uni-directional long-run causality running from $CO_2$ emission to electricity consumption, which can result in a negative impact of $CO_2$ emission reduction policy on economic growth and electricity consumption, (3) a uni-directional long-run causality running from FDI to GDP, and uni-directional short- and long-run causalities running from FDI to electricity consumption, which may result from relatively lower electricity prices than investing countries, (4) no causality between FDI and $CO_2$ emission, which is based on the characteristics of FDI composed of service industries. Considering the above causal relationships among the four variables, the policy implication needs to focus on the electricity demand management based on the relevant R&Ds, and on the gradual transition from fossil fuel- to renewable-energy. Adaptive policy to increase the FDI inflow is also needed.

Characteristics of Catalysts System of NGOC-LNT-SCR for CNG Buses (CNG 버스용 NGOC+LNT+SCR 촉매시스템의 특성)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.626-631
    • /
    • 2019
  • The policy-making and technological development for the supply expansion of eco-friendly automobiles has been continuing, but the internal combustion engines still accounts for about 95%. Also, in order to meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is gradually increasing. This study is a basic study for the post-Euro-VI exhaust response of CNG buses, and it is to investigate the basic characteristics according to Pd substitution transition metal effect, catalyst volume effect and space velocity. A catalysts was prepared and tested using a model gas reactor. The NGOC catalyst with 3Pd exhibited the highest catalytic activity with 22% at $300^{\circ}C$, 48% at $350^{\circ}C$ and about 75% at $500^{\circ}C$. 3Co NGOC containing 3wt% of transition metal was excellent in oxidation ability, and it was small in size of 2nm, and the degree of catalyst dispersion was improved and de-NO/CO conversion was high. The volume of the NGOC-LNT-SCR catalyst system was optimal in the combination of 1.5+0.5+0.5 with a total score of 165, considering $de-CH_4/NOx$ performance and catalyst cost. For SV $14,000h^{-1}$, the $CH_4$ reduction performance was the highest at about 20%, while the SV $56,000h^{-1}$ was the lowest at about 5%. If the space velocity is small, the flow velocity decreases and the time remaining in the catalyst volume become long, so that the harmful gas was reduced.

The Study of CO2 Gasification of Low Rank Coal Impregnated by K2CO3, Mn(NO3)2, and Ce(NO3)3 (저급석탄에 K2CO3와 Mn(NO3)2 및 Ce(NO3)3이 CO2-석탄 가스화 반응에 미치는 영향)

  • Park, SangTae;Choi, YongTaek;Shon, JungMin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.312-318
    • /
    • 2011
  • We have investigated the kinetics and catalytic activity of $CO_2$-lignite gasification with various metal precursors as catalysts. $K_2CO_3$, $Mn(NO_3)_2$, and $Ce(NO_3)_3$ were used and impregnated on a coal using an evaporator. The gasification experiments were carried out with the low rank coal loaded with 5 wt% catalyst at the temperature range from $700{\sim}900^{\circ}C$ and atmospheric pressure with the $N_2-CO_2$ reactant gas mixture. The catalytic effect on the gasification rate of the low rank coal with $CO_2$ was determined by the thermogravimetric analyzer. It was observed that the low rank coal reached the complete carbon conversion regardless of the kinds of catalysts at $900^{\circ}C$ from the results of TGA. The catalytic activity was ranked as 5 wt% $K_2CO_3$ > 5 wt% $Mn(NO_3)_2$ > 5 wt% $Ce(NO_3)_3$ > Non-catalyst at $900^{\circ}C$. The gasification rate increased with increasing the temperature. The activation energy of the catalytic gasification with 5 wt% $K_2CO_3$ was 119.0 kJ/mol, which was the lowest among all catalysts.

Hydrotreating for Stabilization of Bio-oil Mixture over Ni-based Bimetallic Catalysts (Ni계 이원금속 촉매에 의한 혼합 바이오오일의 안정화를 위한 수소첨가 반응)

  • Lee, Seong Chan;Zuo, Hao;Woo, Hee Chul
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.69-78
    • /
    • 2021
  • Vegetable oils, such as palm oil and cashew nut shell liquid (CNSL), are used as major raw materials for bio-diesel in transportation and bio-heavy oil in power generation in South Korea. However, due to the high unsaturation degree caused by hydrocarbon double bonds and a high content of oxygen originating from the presence of carboxylic acid, the range of applications as fuel oil is limited. In this study, hydrotreating to saturate unsaturated hydrocarbons and remove oxygen in mixed bio-oil containing 1/1 v/v% palm oil and CNSL on monometallic catalysts (Ni and Cu) and bimetallic catalysts (Ni-Zn, Ni-Fe, Ni-Cu Ni-Co, Ni-Pd, and Ni-Pt) was perform under mild conditions (T = 250 ~ 400 ℃, P = 5 ~ 80 bar and LHSV = 1 h-1). The addition of noble metals and transition metals to Ni showed synergistic effects to improve both hydrogenation (HYD) and hydrodeoxygenation (HDO) activities. The most promising catalyst was Ni-Cu/��-Al2O3, and in the wide range of the Ni/Cu atomic ratio of 9/1~1/4, the conversion for HYD and HDO reactions of the catalysts were 90-93% and 95-99%, respectively. The tendency to exhibit almost constant reaction activity in these catalysts of different Ni/Cu atomic ratios implies a typical structure-insensitive reaction. The refined bio-oil produced by hydrotreating (HDY and HDO) had significantly lower iodine value, acid value, and kinetic viscosity than the raw bio-oil and the higher heating value (HHV) was increased by about 10%.

Preparation of Bio-oil from Ginkgo Leaves through Fast Pyrolysis and its Properties (은행잎 바이오매스로부터 급속 열분해를 통한 바이오-오일 생산 및 특성 연구)

  • In-Jun Hwang;Jae-Rak Jeon;Jinsoo Kim;Seung-Soo Kim
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.200-216
    • /
    • 2023
  • Ginkgo leaves are considered waste biomass and can cause problems due to the strong insecticidal actions of ginkgolide A, B, C, and J and bilobalide. However, Ginkgo leaf biomass has high organic matter content that can be converted into fuels and chemicals if suitable technologies can be developed. In this study, the effect of pyrolysis temperature, minimum fluidized velocity, and Ginkgo leaf size on product yields and product properties were systematically analyzed. Fast pyrolysis was conducted in a bubbling fluidized bed reactor at 400 to 550℃ using silica sand as a bed material. The yield of pyrolysis liquids ranged from 33.66 to 40.01 wt%. The CO2 and CO contents were relatively high compared to light hydrocarbon gases because of decarboxylation and decarbonylation during pyrolysis. The CO content increased with the pyrolysis temperature while the CO2 content decreased. When the experiment was conducted at 450℃ with a 3.0×Umf fluidized velocity and a 0.43 to 0.71 mm particle size, the yield was 40.01 wt% and there was a heating value of 30.17 MJ/kg, respectively. The production of various phenol compounds and benzene derivatives in the bio-oil, which contains the high value products, was identified using GC-MS. This study demonstrated that fast pyrolysis is very robust and can be used for converting Ginkgo leaves into fuels and thus has the potential of becoming a method for waste recycling.

Research Trends of Ni-based Catalysts on Steam Reforming of Bio-oils for H2 Production: A Review (수소 생산을 위한 바이오오일 수증기 개질 반응에서의 니켈계 촉매 연구동향)

  • Da Hae Lee;Hyeon Myeong Seo;Yun Ha Song;Jaekyoung Lee
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.163-171
    • /
    • 2023
  • Hydrogen has been gaining a lot of attention as a possible clean energy source that can aid in reaching carbon neutrality. Currently, hydrogen production has relied on the steam reforming of fossil fuels. However, due to the carbon dioxide emissions caused by this process, hydrogen production based on the steam reforming of bio-oil derived from biomass has been proposed as an alternative approach. In order to use this alternative approach efficiently, one of the key issues that must be overcome is that the complexity of bio-oil, which has a large molecular weight and diverse functional groups of hydrocarbons, promotes the catalytic deactivation of nickel-based catalysts. In this review, research efforts to improve nickel-based catalysts for the steam reforming of bio-oil have been discussed in terms of the active phase, support, and promoters. The active phases are involved in activating C-C and C-H bonds of high-molecular-weight hydrocarbons, and noble and transition metals can be utilized. In terms of the support and promoters, the catalytic deactivation of Ni-based catalysts can be inhibited by utilizing reactive lattice oxygen for support or by suppressing the acidity. The development of active and stable Ni-based reforming catalysts plays a critical role in clean hydrogen production based on bio-oils.

A Study on Estimating CO2 Emission of Port in Korea (국내 항만장비의 온실가스 배출량 산정 및 추정 연구)

  • 김보경;박민정;안승현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.110-111
    • /
    • 2023
  • As carbon neutrality has recently emerged as a global issue, the carbon neutral roadmap of MOF has been established and various strategies have been proposed to achieve carbon neutrality in the entire marine industry. The port sector is also included in the target for greenhouse gas reduction, but emissions are not being measured due to limitations in data collection and no inventory construction. For building a carbon-neutral port, it is essential to calculate and forecast emissions and set reduction targets. Accordingly, in this study, CO2 emitted from domestic port equipment was calculated according to the IPCC Guildeline's emission calculation method, and future emission was estimated. As a result of the analysis, about 420,000 tons of CO2 was emitted based on the cargo volume in 2020, and emissions are expected to continue to increase in proportion to the increase and about 720,000 tons will be emitted by 2050. In order to achieve carbon neutrality of the port, it needs to promote emission reduction by converting the power source for oil-based equipment to eco-friendly fuel. Also container and miscellaneous ports which require complicated cargo handling need to effort to reduce CO2.

  • PDF

Analysis of CO2 Emission and Effective CO2 Capture Technology in the Hydrogen Production Process (수소생산 공정에서의 CO2 배출처 및 유효포집기술 분석)

  • Kyung Taek Woo;Bonggyu Kim;Youngseok So;Munseok Baek;Seoungsoo Park;Hyejin Jung
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.77-83
    • /
    • 2023
  • Energy consumption is increased by rapid industrialization. As a result, climate change is accelerating due to the increase in CO2 concentration in the atmosphere. Therefore, a shift in the energy paradigm is required. Hydrogen is in the spotlight as a part of that. Currently 95% of hydrogen is fossil fuel-based reforming hydrogen which is accompanied by CO2 emissions. This is called gray hydrogen, if the CO2 is captured and emission of CO2 is reduced, it can be converted into blue hydrogen. There are 3 technologies to capture CO2: absorption, adsorption and membrane technology. In order to select CO2 capture technology, the analysis of the exhaust gas should be carried out. The concentration of CO2 in the flue gas from the hydrogen production process is higher than 20%if water is removed as well as the emission scale is classified as small and medium. So, the application of the membrane technology is more advantageous than the absorption. In addition, if LNG cold energy can be used for low temperature CO2 capture system, the CO2/N2 selectivity of the membrane is higher than room temperature CO2 capture and enabling an efficient CO2 capture process. In this study, we will analyze the flue gas from hydrogen production process and discuss suitable CO2 capture technology for it.

Scenario Analysis, Technology Assessment, and Policy Review for Achieving Carbon Neutrality in the Energy Sector (에너지 부문의 탄소중립 달성을 위한 국내외 시나리오 분석 및 기술, 정책현황 고찰)

  • Han Saem Park;Jae Won An;Ha Eun Lee;Hyun Jun Park;Seung Seok Oh;Jester Lih Jie Ling;See Hoon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.496-504
    • /
    • 2023
  • Countries worldwide are striving to find new sources of sustainable energy without carbon emission due to the increasing impact of global warming. With the advancement of the fourth industrial revolution on a global scale, there has been a substantial rise in energy demand. Simultaneously, there is a growing emphasis on utilizing energy sources with minimal or zero carbon content to ensure a stable power supply while reducing greenhouse gas emissions. In this comprehensive overview, a comparative analysis of carbon reduction policies of government was conducted. Based on international carbon neutrality scenarios and the presence of remaining thermal power generation, it can be categorized into two types: "Rapid" and "Safety". For the domestic scenario, the projected power demand and current greenhouse gas emissions in alignment with "The 10th Basic Plan for Electricity Supply and Demand" was examined. Considering all these factors, an overview of the current status of carbon neutrality technologies by focusing on the energy sector, encompassing transitions, hydrogen, transportation and carbon capture, utilization, and storage (CCUS) was offered followed by summarization of key technological trends and government-driven policies. Furthermore, the central aspects of the domestic carbon reduction strategy were proposed by taking account of current mega trends in the energy sector which are highlighted in international scenario analyses.

Preparation and Characterization of $Cu/Ce_xZr_{1-x}O_2$ Catalysts for Preferential Oxidation of Carbon Monoxide (일산화탄소의 선택적 산화반응을 위한 $Cu/Ce_xZr_{1-x}O_2$ 촉매의 합성과 특성분석)

  • Lee, So-Yeon;Lee, Suk-Hee;Cheon, Jae-Kee;Woo, Hee-Chul
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.54-63
    • /
    • 2007
  • Even traces of CO in the hydrogen-rich feed gas to proton exchange membrane fuel cells (PEMFC) poison the platinum anode electrode and dramatically decrease the power output. In this work, a variety of catalytic materials consisting of $Cu/Ce_xZr_{1-x}O_2$, (x = 0.0-1.0) were synthesised, characterized and tested for CO oxidation and preferential oxidation of CO (PROX). These catalysts prepared by hydrothermal and deposition-precipitation methods. The catalysts were characterized by XRD, XRF, SEM, BET, $N_2O$ titration and oxygen storage capacity (OSC) measurement. The effects of composition of the support and degree of excess oxygen were investigated fur activity and $CO_2$ selectivity with different temperatures. The composition of the support markedly influenced the PROX activity. Among the various $Cu/Ce_xZr_{1-x}O_2$ catalysts having different composition, $Cu/Ce_{0.9}Zr_{0.1}O_2$ and $Cu/Ce_{0.7}Zr_{0.3}O_2$ showed the highest activities (>99%) and selectivities (ca.50%) in the temperature range of $150{\sim}160^{\circ}C$. It was found that by using of $Ce_xZr_{1-x}O_2$ mixed oxide support which possesses a high oxygen storage capacity, oxidation-reduction activity of Cu-based catalyst was improved, which resulted in the increase of catalytic activity and selectivity of CO oxidation in excess $H_2$ environments.

  • PDF