DOI QR코드

DOI QR Code

Scenario Analysis, Technology Assessment, and Policy Review for Achieving Carbon Neutrality in the Energy Sector

에너지 부문의 탄소중립 달성을 위한 국내외 시나리오 분석 및 기술, 정책현황 고찰

  • Han Saem Park (Department of Environment and Energy, Jeonbuk National University) ;
  • Jae Won An (Research Institute for Energy and Mineral Resources Development, Jeonbuk National University) ;
  • Ha Eun Lee (Department of Environment and Energy, Jeonbuk National University) ;
  • Hyun Jun Park (Department of Environment and Energy, Jeonbuk National University) ;
  • Seung Seok Oh (Department of Environment and Energy, Jeonbuk National University) ;
  • Jester Lih Jie Ling (Research Institute for Energy and Mineral Resources Development, Jeonbuk National University) ;
  • See Hoon Lee (Department of Environment and Energy, Jeonbuk National University)
  • 박한샘 (전북대학교 환경에너지융합학과) ;
  • 안재원 (전북대학교 에너지자원개발연구소) ;
  • 이하은 (전북대학교 환경에너지융합학과) ;
  • 박현준 (전북대학교 환경에너지융합학과) ;
  • 오승석 (전북대학교 환경에너지융합학과) ;
  • ;
  • 이시훈 (전북대학교 환경에너지융합학과)
  • Received : 2023.08.10
  • Accepted : 2023.09.09
  • Published : 2023.11.01

Abstract

Countries worldwide are striving to find new sources of sustainable energy without carbon emission due to the increasing impact of global warming. With the advancement of the fourth industrial revolution on a global scale, there has been a substantial rise in energy demand. Simultaneously, there is a growing emphasis on utilizing energy sources with minimal or zero carbon content to ensure a stable power supply while reducing greenhouse gas emissions. In this comprehensive overview, a comparative analysis of carbon reduction policies of government was conducted. Based on international carbon neutrality scenarios and the presence of remaining thermal power generation, it can be categorized into two types: "Rapid" and "Safety". For the domestic scenario, the projected power demand and current greenhouse gas emissions in alignment with "The 10th Basic Plan for Electricity Supply and Demand" was examined. Considering all these factors, an overview of the current status of carbon neutrality technologies by focusing on the energy sector, encompassing transitions, hydrogen, transportation and carbon capture, utilization, and storage (CCUS) was offered followed by summarization of key technological trends and government-driven policies. Furthermore, the central aspects of the domestic carbon reduction strategy were proposed by taking account of current mega trends in the energy sector which are highlighted in international scenario analyses.

세계 각국은 지구온난화로 인한 피해가 증가함에 따라 화석연료를 대신해 탄소배출 없이 지속 가능하게 이용할 수 있는 새로운 에너지 자원들을 찾기 위하여 노력하고 있다. 전세계적으로 4차 산업이 고도화되며 전력수요가 급증했고, 상승하는 수요를 충족함과 동시에 온실가스 배출을 줄이기 위해 탄소비중이 적거나 없는 에너지원을 이용해 안정적인 전력수급계통을 확보하려는 움직임이 커지고 있다. 본 총설에서는 해외 탄소중립 시나리오와 화력발전 잔존여부에 따라 2가지 시나리오인 혁신, 안전으로 분류하여 정부의 탄소저감 목표를 비교 및 분석하였다. 또한, 국내 시나리오의 경우10차 전력수급기본계획의 전력수요 전망 및 온실가스 배출 현황을 연계하여 이를 토대로 탄소저감의 주축이 되는 에너지 분야인 전환, 수소, 수송, 탄소포집 및 활용 부문에서의 핵심 기술 동향 및 정부 주도의 정책흐름을 정리하여 탄소중립기술의 현황을 기술했다. 또한, 해외 시나리오 분석에서 시사되었던 에너지 분야의 주요 변화를 반영하여 국내 탄소저감 전략의 방향을 제시하였다.

Keywords

References

  1. "World energy outlook 2022," IEA(2022). 
  2. "2050 carbon neutral scenario," The government of Republic of Korea(2021). 
  3. Jang, N., Cho, I., Jeon, H. and Koo, J., "Optimization of the Wood Pellet Supply During the Continued Increase of the Renewable Energy's Proportion in the Energy Portfolio," Korean Journal of Chemical Engineering, 39(8), 2028(2022). 
  4. https://yearbook.enerdata.co.kr. 
  5. Ling, J. L. J., Oh, S. S., Park, H. J. and Lee, S. H., "Process Simulation and Economic Evaluation of a Biomass Oxygen Fuel Circulating Fluidized Bed Combustor with an Indirect Supercritical Carbon Dioxide Cycle," Renew. Sustain. Energy Rev., 182, 113380 (2023). 
  6. "The 10th basic plan for electricity supply and demand," Korea Ministry of Trade, Industry and Energy(2023). 
  7. Go, E. S., Kim, B.-S., Ling, J. L. J., Oh, S. S., Park, H. J. and Lee, S. H., "In-situ Desulfurization Using Porous Ca-based Materials for the Oxy-cfb Process: A Computational Study," Environ. Res., 225, 115582(2023). 
  8. https://www.mofa.go.kr. 
  9. Jang, M. J., Lee, J. Y., Lee, H. J. and Ahn, Y. H., "A Study on Ghg Emission and Emission Intensity Pathways in the Power Sector of Korea by the 2050 Carbon Neutrality Scenarios," Journal of Climate Change Reserch, 13(6), 843(2022). 
  10. Cheon, Y., "Review of Global Carbon Neutral Strategies and Technologies," J. Korean Soc. Min. Energy Res. Eng., 59(1), 99 (2022). 
  11. Kong, J. and Cho, S., "Towards Net-zero Emissions: Energy System Integration and Policy Direction for New and Renewable Energy," J. Korean Soc. Min. Energy Res. Eng., 58(3), 258(2021). 
  12. "International energy outlook 2017," EIA(2017). 
  13. "Energy perspectives," Equinor(2018). 
  14. "World energy outlook 2018," IEA(2018). 
  15. "IEEJ outlook 2019," IEEJ(2019). 
  16. "2018 opec world oil outlook," OPEC(2017). 
  17. "Energy outlook 2022," British Petroleum(2022). 
  18. Liu, H., Were, P., Li, Q., Gou, Y. and Hou, Z., "Worldwide Status of Ccus Technologies and Their Development and Challenges in China," Geofluids, 2017(2017). 
  19. Lee, Y. H. and Sung, T. H., "Economy Analysis and Optimized Capacity Evaluation of Photovoltaic Related Energy Storage System," J. Korean Soc. Ind. Converg., 25(2), 209(2022). 
  20. Donghyeok Son, Lim, W.-G. and Lee, J., "A Short Review of the Recent Developments in Functional Separators for Lithium-sulfur Batteries," Korean J. Chem. Eng., 40(3), 473-487(2022).  https://doi.org/10.1007/s11814-022-1372-0
  21. Jester Lih Jie Ling, Won Yang, Han Saem Park, Ha Eun Lee and Lee, S. H., "A Comparative Review on Advanced Biomass Oxygen Fuel Combustion Technologies for Carbon Capture and Storage," Energy 284, 128566(2023). 
  22. Mitali, J., Dhinakaran, S. and Mohamad, A. A., "Energy Storage Systems: A Review," Energy Storage Saving, 1(3), 166-216(2022).  https://doi.org/10.1016/j.enss.2022.07.002
  23. Yu Tack, K., Jung, S., Cha, D. and YooEo, H., "Grid Stabilization and Optimization System Design and Economic Analysis of Galapagos Island, Ecuador Using Energy Storage System (ess)," J. Energy Eng., 31(2), 29(2022). 
  24. Jeon, W., Kim, J.-Y. and Lee, S., "Establishing an Efficient Low-carbon Power System by Reducing Curtailment of Renewable Energy Using Ess- the Case of Jeju Island in 2025," Journal of Climate Change Reserch, 13(1), 1(2022). 
  25. Ko, Y.-S., "A Study on the Application Cases Analysis of Ess (energy storage system) to Electric Power System," Journal of the Korea Institute of Electronic Communication Sciences, 11(1), 53-58(2016).  https://doi.org/10.13067/JKIECS.2016.11.1.53
  26. Ali, D. M. M., "Hydrogen Energy Storage," Energy Storage Devices, InTechOpen(2019). 
  27. Park, E. S., Jung, Y. B. and Oh, S. W., "Carbon Neutrality and Underground Hydrogen Storage," J. Korean Soc. Min. Energy Res. Eng., 59(5), 462(2022). 
  28. Park, S., Lee, D. W., Choi, B. B. and Yoo, S. J., "Current Progress of Electrocatalysts for Anion Exchange Membrane Fuel Cells," Korean Journal of Chemical Engineering, 40, 1549(2023). 
  29. Hermesmann, M. and Muller, T., "Green, Turquoise, Blue, or Grey? Environmentally Friendly Hydrogen Production in Transforming Energy Systems," Prog. Energy Comb. Sci., 90, 100996 (2022). 
  30. Kim, J. H., Park, D. K., Kim, J. H., Kim, H. J., Kim, H. S., Kang, S. H. and Ryu, J. H., "Trend of CO2 Free H2 Production Technology for Carbon Neutrality," J. Energy Climate Change, 16(2), 103(2021). 
  31. Koranyi, T. I., Nemeth, M., Beck, A. and Horvath, A., "Recent Advances in Methane Pyrolysis: Turquoise Hydrogen with Solid Carbon Production," Energies, 15(17), 6342(2022). 
  32. Schalenbach, M., Zeradjanin, A. R., Kasian, O., Cherevko, S. and Mayrhofer, K. J., "A Perspective on Low-temperature Water Electrolysis-challenges in Alkaline and Acidic Technology," Inter. J. Elec. Soc., 13(2), 1173(2018). 
  33. Xu, Y. and Zhang, B., "Recent Advances in Electrochemical Hydrogen Production from Water Assisted by Alternative Oxidation Reactions," ChemElectroChem, 6(13), 3214(2019). 
  34. Ryi, S. K., Han, J. Y., Kim, C. H., Lim, H. K. and Jung, H. Y., "Technical Trends of Hydrogen Production," Clean Technol., 23(2), 121(2017). 
  35. Shih, A. J., Monteiro, M. C., Dattila, F., Pavesi, D., Philips, M., da Silva, A. H., Vos, R. E., Ojha, K., Park, S. and van der Heijden, O., "Water Electrolysis," Nat. Rev. Methods Primers, 2(1), 84(2022). 
  36. "Hydrogen economy roadmap of korea," The government of Republic of Korea(2019). 
  37. http://www.motie.go.kr. 
  38. Choi, J. H. and Choi, J. Y., "Research Status of Hydrogen Fuel Cell System Based on Hydrogen Electric Vehicle," Journal of Energy Engineering, 29(4), 26(2020). 
  39. Galanido, R. J., Sebastian, L. J., Asante, D. O., Kim, D. S., Chun, N.-J. and Cho, J., "Fuel Filling Time Estimation for Hydrogen-powered Fuel Cell Electric Vehicle at Different Initial Conditions Using Dynamic Simulation," Korean J. Chem. Eng., 39(4), 853 (2022). 
  40. Tanc, B., Arat, H. T., Baltacioglu, E. and Aydin, K., "Overview of the Next Quarter Century Vision of Hydrogen Fuel Cell Electric Vehicles," Inter. J. Hydrog. Energy, 44(20), 10120(2019). 
  41. Cho, M. and Koo, Y. D., "Advanced Technologies for the Commercialization of Hydrogen Fuel Cell Electric Vehicle," Journal of Energy Engineering, 23(3), 132(2014). 
  42. Ryu, H. Y., Kim, B. I., Song, M. S., Kim, H. J., Lee, D. S., Lee, S. Y., Shin, J. M., Yoo, Y., Kim, S. H. and Lee, H. J., "Optimization of Hydrogen Refueling Stations Deployment and Supply Chain Networks: Current Status and Research Suggestions," J. Korean Ins. Ind. Eng., 48(2), 211(2022). 
  43. Park, C., Lim, S., Shin, J. and Lee, C.-Y., "How Much Hydrogen Should be Supplied in the Transportation Market? Focusing on Hydrogen Fuel Cell Vehicle Demand in South Korea: Hydrogen Demand and Fuel Cell Vehicles in South Korea," Technol. Forecasting Social Change, 181, 121750(2022). 
  44. https://www.hydrogen.energy.gov/pdfs/review20/h2000_pivovar_2020_p.pdf. 
  45. Lee, D. S., Park, J. S. and Sim, Y. S., "A Study on the Construction of Fuel Cell Electric Vehicle and Hydrogen Charging Station Supply Activation (mainly in gyeongsangbuk-do)," J. Korean Soc. Environ. Eng., 44(12), 560(2022). 
  46. http://www.motie.go.kr. 
  47. http://www.molit.go.kr. 
  48. Kim, H. M. and Nah, I. W., "Brief Review on Carbon Dioxide Capture and Utilization Technology," Korean J. Chem. Eng., 57(5), 589(2019). 
  49. Park, H. J., Oh, S. S., Olanrewaju, O. N., Ling, J. L. J., Jeong, C. S., Park, H. S. and Lee, S. H., "Recent Development of Thermochemical Conversion Processes with Fluidized Bed Technologies," Korean J. Chem. Eng., 61(1), 8(2023). 
  50. Seo, S. B., Ahn, H., Go, E. S., Ling, L. J. J., Siambun, N. J., Park, Y.-K. and Lee, S. H., "Evaluation of the Solar Thermal Storage of Fluidized Bed Materials for Hybrid Solar Thermochemical Processes," Biomass Convers. Biorefin., 1(2022). 
  51. Koh, M. H., "CO2 Capture, Utilization, and Storage (ccus) Policy Trends in the European Union (eu) and Major European Countries," Pub. Land Law Rev., 463(2022). 
  52. Hawthorne, C., Trossmann, M., Cifre, P. G., Schuster, A. and Scheffknecht, G., "Simulation of the Carbonate Looping Power Cycle," Energy Procedia, 1(1), 1387(2009). 
  53. Anthony, E., "Ca Looping Technology: Current Status, Developments and Future Directions," Greenhouse Gases 1(1), 36(2011). 
  54. Dieter, H., Bidwe, A. R., Varela-Duelli, G., Charitos, A., Hawthorne, C. and Scheffknecht, G., "Development of the Calcium Looping CO2 Capture Technology from Lab to Pilot Scale at Ifk, University of Stuttgart," FUEL, 127, 23(2014). 
  55. Abanades, J. C., Grasa, G., Alonso, M., Rodriguez, N., Anthony, E. J. and Romeo, L. M., "Cost Structure of a Postcombustion CO2 Capture System Using Cao," Environ Sci Technol, 41(15), 5523(2007). 
  56. Poboss, N., Schuster, A. and Scheffknecht, G., Machbarkeitsstudie fur das carbonate-looping-verfahren zur CO2-abscheidung aus kraftwerksabgasen, Univ., Inst. f. Verfahrenstechnik u. Dampfkesselwesen (IVD)(2008). 
  57. Romeo, L. M., Lara, Y., Lisbona, P. and Martinez, A., "Economical Assessment of Competitive Enhanced Limestones for CO2 Capture Cycles in Power Plants," Fuel Proc. Technol., 90(6), 803(2009). 
  58. Han, R., Wang, Y., Xing, S., Pang, C., Hao, Y., Song, C. and Liu, Q., "Progress in Reducing Calcination Reaction Temperature of Calcium-looping CO2 Capture Technology: A Critical Review," Chem. Eng. J., 450, 137952(2022). 
  59. Dave, N., Do, T., Palfreyman, D., Feron, P., Xu, S., Gao, S. and Liu, L., "Post-combustion Capture of CO2 from Coal-fired Power Plants in China and Australia: An Experience Based Cost Comparison," Energy Procedia, 4, 1869(2011). 
  60. Wang, W. J., Scudiero, L. and Ha, S., "Recent Progress in Electrochemical Reduction of CO2 Into Formate and C2 Compounds," Korean J. Chem. Eng., 39(3), 461(2022). 
  61. Ystad, P. M., Bolland, O. and Hillestad, M., "Ngcc and Hard-coal Power Plant with CO2 Capture Based on Absorption," Energy Procedia, 23, 33-44(2012).  https://doi.org/10.1016/j.egypro.2012.06.019
  62. Dean, C. C., Blamey, J., Florin, N. H., Al-Jeboori, M. J. and Fennell, P. S., "The Calcium Looping Cycle for CO2 Capture from Power Generation, Cement Manufacture and Hydrogen Production," Chem. Eng. Res. Des., 89(6), 836(2011). 
  63. Kwon, Y. K., "Current Status of Site Screening and Selection for Large-scale CO2 Storage Formations and Future Plan for the Large-scale Ccs Projet in Korea," JECC(2019). 
  64. Kim, D. R., "A Study on the Current Status of Ccus-related Legislation and Improvement Plan in Korea," Law Review, 22(4), 43(2022).