• Title/Summary/Keyword: 연료탱크

Search Result 283, Processing Time 0.023 seconds

Prediction of Thermal Behavior of Automotive LNG Fuel Tank (LNG 자동차 연료 탱크의 열적 거동에 대한 예측)

  • NamKoong, Kyu-Won;Chu, Seok-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.875-883
    • /
    • 2010
  • The thermal performance of LNG fuel tanks of vehicles is determined by the time for non-venting storage of fuel and the amount of fuel supplied to the engine. In this study, we selected a double-walled vacuum-insulated fuel tank with a volume of 450 liter, and the properties of the fuel contained in it were assumed to be the same as those of the methane($CH_4$). For the increasing the non-venting fuel storage time, we propose the use of shielded penetration pipes in the tank. We compared the storage times of the tank used in our study with those of the conventional fuel tank. Further, the additional heat input required to maintain the fuel pressure necessary for an appropriate fuel supply rate was predicted. For these parameters, we derived a thermodynamic relationship that can be used to estimate the rate of increase in pressure for a known heat input, and we obtained equations for estimating the rate of heat leaked by using the established heat transfer model. From the results of numerical computation, we found the non-venting storage time of the tank with shielded pipes to be 25-30% higher than that of the tank with unshielded pipes. Further, we determined the appropriate operation conditions by taking into consideration the transfer rate of additional heat provided to the fuel tank.

Study on the Numerical Analysis of Crash Impact Test for External Auxiliary Fuel Tank based on ALE (ALE 기반 외부 보조연료탱크 충돌충격시험 수치해석 연구)

  • Kim, Hyun-Gi;Kim, Sungchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.8-13
    • /
    • 2018
  • A fluid-structure interaction analysis should be performed to evaluate the behavior of the internal fuel and its influence in order to confirm the structural soundness of the fuel tank against external impacts. In the past, fluid-structure interaction analyses have been limited to the obtention of numerical simulation results due to the need for considerable computational resources and excessive computation time. However, recently, computer performance has been dramatically improved, enabling complex numerical analyses such as fluid-structure interaction analysis to be conducted. Lagrangian and Euler coupling methods and Lagrangian based analysis methods are mainly used for fluid-structure interaction analysis. Since both of these methods have their advantages and disadvantages, it is necessary to select the more appropriate one when conducting a numerical analysis. In this study, a numerical analysis of a crash impact test for a fuel tank is performed using ALE. The purpose of the numerical analysis is to estimate the possibility of failure of the fuel tank mounted inside the container when it is subjected to a crash impact. As a result of the numerical analysis, the fluid behavior inside the fuel tank is investigated and the stress generated in the fuel tank and the container structure is calculated, thereby enabling the possibility of fuel tank failure and leakage of the internal fluid to be evaluated.

Analysis of the Longitudinal Static Stability and the Drop Trajectory of a Fighter Aircraft's External Fuel Tank (전투기 외부 연료 탱크의 종방향 정안정성 및 투하 궤적 해석)

  • Kang, Chi-Hang;Cho, Hwan-Kee;Jang, Young-Il;Lee, Sang-Hyun;Kim, Kwang-Youn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.274-279
    • /
    • 2010
  • The present work is to analyze the longitudinal static stability and the drop trajectory of fighter aircraft's external fuel tank, of which horizontal fin is modified as the 20% scale down size compared with the original one. The analytical results to the pitching stability of external fuel tank using a thin airfoil's aerodynamic force data show the corresponding tendency to results of wind tunnel experiment. Results of trajectory simulation by the 6 degree of freedom equations of motion, comparing with drop trajectories of wind tunnel experiment, are shown that aircraft's attitude affects strongly on horizontal movement but not on the vertical movement. Those results give the reliability to aircraft safety when the external fuel tank with the 20% reduced horizontal fins is released from aircraft based on the flight manual.

Comparison of the Internal Pressure Behavior of Liquid Hydrogen Fuel Tanks Depending on the Liquid Hydrogen Filling Ratio (액체수소 충전 비율에 따른 액체수소 연료탱크의 내부 압력 거동 비교)

  • Dongkuk Choi;Sooyong Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.8-16
    • /
    • 2024
  • Because hydrogen has very low density, a different storage method is required to store the same amount of energy as fossil fuel. One way to increase the density of hydrogen is through liquefaction. However, since the liquefied temperature of hydrogen is extremely low at -252 ℃, it is easily vaporized by external heat input. When liquid hydrogen is vaporized, a self-pressurizing phenomenon occurs in which the pressure inside the hydrogen tank increases, so when designing the tank, this rising pressure must be carefully predicted. Therefore, in this paper, the internal pressure of a cryogenic liquid fuel tank was predicted according to the liquid hydrogen filling ratio. A one-dimensional thermodynamic model was applied to predict the pressure rise inside the tank. The thermodynamic model considered heat transfer, vaporization of liquid hydrogen, and fuel discharging. Finally, it was confirmed that there was a significant difference in pressure behavior and maximum rise pressure depending on the filling ratio of liquid hydrogen in the fuel tank.

Performance Test of an Oxidizer Tunnel-Type Pipe for Launch Vehicle (발사체 산화제 터널형 배관 성능시험)

  • Kil, Gyoung-Sub;Han, Sang-Yeop;Kho, Hyeon-Seok;Shin, Dong-Sun;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.273-277
    • /
    • 2009
  • An oxidizer tunnel-type pipe, which shall transport oxidizer from an oxidizer tank to a turbo-pump of an engine, studied is installed through a fuel tank located under an oxidizer tank. A tunnel-type pipe can save weight compared to a detour-type pipe, however may vary the temperature of fuel stored in a fuel tank because of a broad heat transfer area. Hence in this study the characteristics of main oxidizer pipe and thermal propagation from oxidizer to a fuel tank are monitored by a cryogenic performance test with a tunnel-type pipe. In addition, the possibility of adaptation of an oxidizer tunnel-type pipe to launcher system is also analyzed.

  • PDF

Assessment of Self-sealing Performance for Fuel Tanks of Rotorcraft (회전익 항공기용 연료탱크 자기밀폐 성능시험 평가)

  • Jung, Seung-Tack;Kim, Hyun-Gi;Kim, Sung-Chan;Lee, Jong-Won;Hwang, In-Hee;Shin, Dong-Woo;Chung, Tae-Kyoung;Ha, Byoung-Geun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1173-1176
    • /
    • 2010
  • 회전익 항공기의 연료탱크는 피탄으로 인해 연료 누유시 발생할 수 있는 화염으로부터 기체와 승무원의 생존성을 높이기 위하여 연료누설을 차단하는 자기밀폐 기능이 필수적으로 요구된다. 자기밀폐 기능은 내부에 적층된 자기밀폐 소재가 누설되는 연료와 화학반응을 일으켜 급속히 팽창됨으로써 피탄부를 막아, 연료누설을 차단하는 역할을 한다. 본 연구는 미군사규격(MIL-DTL-27422D) 기준으로 국내에서 제작 및 수행한 회전익 항공기의 연료탱크 자기밀폐 성능시험 평가 결과를 제시한다.

  • PDF

Assessment of Self-sealing Performance of the Fuel Tank of the Rotorcraft against Gunfire Projectiles (회전익 항공기용 연료탱크 내탄성능 시험평가)

  • Kim, Hyun-Gi;Kim, Sung-Chan;Lee, Jong-Won;Hwang, In-Hee;Hue, Jang-Wook;Shin, Dong-Woo;Jung, Tae-Kyung;Ha, Byoung-Geun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.477-481
    • /
    • 2010
  • Some rotorcraft fuel tanks are required to be self-sealing and crashworthy for enhancing the survivability of crews. Self-sealing capability prevents the fuel leakage through contacting fuel with self-sealing material when the tank wall is penetrated by projectiles such as bullets. US army established MIL-DTL-27422D which specifies the detail requirements related to gunfire resistant fuel tank especially for military rotorcraft. The Fuel tanks for Korea Helicopter Program have been developed in accordance with MIL-DTL-27422D. The Self-sealing capability of the fuel tanks has been confirmed by the gunfire resistance test which specified on the MIL-DTL-27422D.

Assessment of Structural Soundness and Joint Load of the Rotorcraft External Fuel Tank by Sloshing Movement (슬로싱 운동에 의한 회전익항공기 외부연료탱크 체결부 하중 및 구조건전성 평가)

  • Kim, Hyun-Gi;Kim, Sung Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.605-611
    • /
    • 2019
  • The fuel sloshing due to the rapid manoeuvre of the aircraft causes significant loads on internal components, which may break components or piping. In particular, a significant load is applied to the joint of the external fuel tank by sloshing movement, which may affect the safety of the aircraft when the joint of the external fuel tank is damaged. Therefore, in order to improve the survivability of aircraft and crew members, the design of external fuel tanks, and joints should be performed after evaluating the sloshing load through a numerical analysis of the fuel sloshing conditions. In this paper, a numerical analysis was performed on the sloshing test of the external fuel tank for rotorcraft. ALE (Arbitrary Lagrangian Eulerian) technique was used, and the test conditions specified in the U.S. Military Specification (MIL-DTL-27422D) was applied as the conditions for numerical analysis. As a result of the numerical analysis, the load on the joint of the external fuel tank was calculated. Moreover, the effects of sloshing movement on structural soundness were assessed through analysis of stress levels and margin of safety on metal fittings and composite containers.

Verification of the Reliability of the Numerical Analysis for the Crash Impact Test of Rotorcraft Fuel Tank (회전익항공기용 연료탱크 충돌충격시험에 대한 수치해석 신뢰성 검증)

  • Kim, Sungchan;Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.918-923
    • /
    • 2018
  • The main function of a fuel tank is to store fuel. On the other hand, the structural soundness of the fuel tank is related directly to the survival of the crew in an emergency situation, such as an aircraft crash, and the relevant performance is demonstrated by a crash impact test. Because crash impact tests have a high risk of failure due to the high impact loads, various efforts have been made to minimize the possibility of trial and error in the actual test at the beginning of the design. Numerical analysis performed before the actual test is a part of such efforts. For the results of numerical analysis to be reflected in the design, however, the reliability of numerical analysis needs to be ensured. In this study, the results of numerical analysis and actual test data were compared to ensure the reliability of numerical analysis for the crash impact test of a rotorcraft fuel tank. For the numerical analysis of a crash impact test, LS-DYNA, crash analysis software, was used and the ALE (arbitrary Lagrangian Eulerian) technique was applied as the analysis method. To obtain actual test data, strain gages were installed on the metal fittings of the fuel tank and linked to the data acquisition equipment. The strain and stress of the fuel tank fitting were calculated by numerical analysis. The reliability of the numerical analysis was enhanced by assessing the error between the strain measurement of the upper fitting obtained from an actual fuel tank and the strain calculated from numerical analysis.

Damage Evaluation for High Pressure Fuel Tank by Analysis of AE Parameters (고압가스 연료탱크의 손상평가를 위한 음향방출 변수의 분석)

  • Jee, Hyun-Sup;Lee, Jong-O;Ju, No-Hoe;Lee, Jong-Kyu;So, Cheal-Ho
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.36-40
    • /
    • 2011
  • This paper described analysis of acoustic emission parameter for the damage evaluation of type II vehicle fuel tank during fracture test. The observation of Kaiser effect, Felicity effect and creep effect is the means of damage evaluation method. It is possible to evaluate tank damage by the ratio of hit of over 60 dB and total hit. Damage mechanism of pressure tank can be estimated by analysis of average rise time, average amplitude.