• Title/Summary/Keyword: 연료전지 최적화

Search Result 137, Processing Time 0.03 seconds

Study on Polymer Electrolyte Membrane Fuel Cell for UAV Applications (고분자 전해질막 연료전지의 무인항공기 탑재화 연구)

  • Kim, Jin-Cheol;Kim, Sung-Uk;Kim, Dong-Min;Kim, Tae-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.153-156
    • /
    • 2012
  • The optimization and integration of a fuel cell were performed to improve the performance and reliability of the fuel cell in this paper. To improve the performance of the PEMFC, current and voltage of the fuel cell were measured using an electrical load, and the results was compared and analyzed with the data of a commercial fuel cell. Based on the above results, a controller for a fuel cell UAV applications was designed, and the fuel cell control algorithm was developed to optimize the performance of the fuel cell UAV.

  • PDF

Optimization of Battery Power Distribution to Improve Fuel Consumption of Fuel Cell Hybrid Vehicle (연료전지 하이브리드 차량의 연비향상을 위한 배터리 동력분배 최적화)

  • Lee, Dong Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.397-403
    • /
    • 2013
  • The demand for eco-friendly and higher fuel economy vehicles has helped develop eco-friendly and fuel-efficient vehicles such as hybrid vehicles. In a hybrid vehicle, the change in the battery charge after driving should be added to the fuel consumption as the equivalent fuel usage based on its own characteristics. Thus, the fuel efficiency of a hybrid vehicle cannot be improved simply by increasing the battery capacity. In this study, I attempt to improve the total fuel economy of a hybrid vehicle, including the equivalent fuel consumption, by modeling a fuel cell hybrid vehicle using Matlab Simulink, analyzing the usage zone of the fuel cell with the existing control strategy, and optimizing the power distribution of the battery and fuel cell in the main usage zone of the fuel cell.

Linear Matrix Inequality based Fuzzy Modeling for PEM Fuel Cells (수소이온교환막 연료전지의 선형행렬부등식 기반 TS 퍼지 모델링)

  • Kim, Moon-Hwan;Park, Han-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.185-188
    • /
    • 2007
  • 본 논문에서는 수소이온교환막 연료전지의 퍼지 모델링 기법을 제안하였다. 수소이온교환막 연료전지는 가정용으로 공급이 적합한 연료전지로서 최근들어 많은 연구가 진행되고 있다. 연료전지 특성 모델은 이러한 연구에 중요한 역할을 하고 있으면 이 때문에 다양한 연료 전지 모델링 기법들이 제안되고 있다. 본 논문에서는 선형 행렬부등식 최적화기법을 기반 새로운 형태의 퍼지 모델링 기법이 제안되었다. 최종적으로 시뮬레이션을 통해 제안된 기법의 우수성을 확인하였다.

  • PDF

Optimization of micro structure of solid oxide fuel cell electrode (고체산화물 연료전지 변수 조사 및 전극미세구조 최적화)

  • Jo, Dong Hyun;Chun, Jeong Hwan;Park, Ki Tae;Hwang, Ji Won;Kim, Sung Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.71.2-71.2
    • /
    • 2010
  • 고체산화물연료전지는 청정에너지원으로써 기존의 발전방식을 대신할 차세대 에너지원으로 각광 받고 있다. 고체산화물 연료전지는 고온에서 작동하는 특성상 실험을 통하여 전극미세구조 및 구동조건을 최적화하는 것은 매우 어렵다. 본 연구는 전기화학식을 이용한 전산모사를 통해서 고체산화물 연료전지의 구동조건에 따른 성능 평가 및 전극의 미세구조 최적화 과정을 수행하였다. 전극 내 전달현상을 무시하고 오직 전기화학반응만을 고려한 전산모사는 단전지의 전극미세구조 및 구동조건에 따른 전지성능을 빠르게 예측할 수 있으며, 이를 기반으로 다양한 조건에서 얻은 전지 성능 데이터를 통해 전극미세구조를 최적화하였다. 개회로전압, 활성화분극, 저항분극, 물질수송손실을 표현하기 위하여 Nernst 식, Butler-Voler 식, 옴의 법칙, dusty-gas 모델을 각각 사용하였으며, 전극미세구조 및 구동조건의 변화는 물질확산계수 및 교환전류밀도를 통하여 그 영향이 전지성능에 반영된다. 온도, 압력, 주입 연료의 조성에 대한 성능평가가 수행되었으며, 1023K, 1 bar의 조건하에서 최적의 단전지 성능을 위한 기공도와 기공크기를 조사하였다. 더 향상된 단전지 성능 확보를 위해서 실험에서 쓰이는 기능층(functional layer)과 유사하게 넓은 반응 면적과 원활한 반응물 및 생성물의 이동을 보장하도록 기공도 및 기공크기를 그레이딩한 전극구조(graded-electrode)를 디자인하고 성능을 평가하였다. 그 결과 기존의 전지구조 대신에 그레이딩된 전극을 사용할 경우 50%이상 향상된 전지성능을 예측할 수 있었다.

  • PDF

Effect of hydrogen recirculation in PEM fuel cell with 2D steady-state model (2차원 정상상태 모델을 이용한 고분자전해질형 연료전지의 수소 재순환의 영향)

  • Chung, Hyun-Seok;Ha, Tae-Jung;Kim, Hyo-Won;Cho, Sung-Woo;Han, Chong-Hun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.209-212
    • /
    • 2007
  • 고분자전해질형 연료전지의 구조 및 구성품의 물성에 따른 성능 및 물이동 현상에 관해서 많은 연구가 진행되고 있다, 이들 연구는 대체적으로 연료 전지의 BOP(Balance of plant)를 포함하는 연료전지 시스템에 관한 연구 보다는 단위 전지 및 스택에 관한 연구에 국한되어 왔다. 연료전지의 시스템에 관한 연구들 또한 세부적인 연료전지 내부의 거동에 대해서는 고려하지 않고 있었다. 이는 연료전지의 상세 모델을 이용해 연료전지 시스템에 대해 접근하기 보다는 시스템의 성능 및 동특성에 대한 연구가 주를 이루었기 때문으로 생각된다. 본 연구에서는 연료전지 음극의 수소 배출가스를 재순환할 경우 연료전지 내부에서의 거동에 미치는 영향에 대해 2차원 정상상태 모델을 이용하여 분석해 보았다. 또한 재순환된 수소에 의한 연료전지 내부 거동의 변화 및 수소 이용율 상승 효과를 연료 전지 성능과 함께 비교해 보았다 이를 위해 2차원 정상상태 모델을 개발하였고 이를 실험을 통해 검증하는 작업을 수행하였다. 여기에 사용된 연료전지 모델은 Gore社 의 $PRIMea^{(R)}$을 사용한 연료전지의 성능을 잘 예측하고 내부의 유동 및 물이동 현상에 관한 정보를 제공한다. 이는 여러 하이브리드 자동차용 연료전지 시스템이 연료전지 배출가스의 재순환을 고려하고 있는 상황에서 연료전지 작동 조건의 최적화에 유용한 정보를 제공 할 수 있다는 의의를 가진다.

  • PDF

R & D Trends on Direct Formic Acid Fuel Cells (직접 개미산 연료전지의 연구동향)

  • Kwon, Yongchai;Han, Jonghee;Kim, Jinsoo
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.583-591
    • /
    • 2008
  • Recently, as a demand for the portable device is surged, there are needs to develop a new fuel cell system for replacing the conventionally used secondary battery. For this purpose, it becomes important to develop direct formic acid fuel cell (DFAFC) that uses formic acid as a fuel. The formic acid can offer typical advantages such as excellent non-toxicity of the level to be used as food additive, smaller crossover flux through electrolyte, and high reaction capability caused by high theoretical electromotive force (EMF). With the typical merits of formic acid, the efforts for optimizing reaction catalyst and cell design are being made to enhance performance and long term stability of DFAFC. As a result, to date, the DFAFC having the power density of more than $300mW/cm^2$ was developed. In this paper, basic performing theory and configuration of DFAFC are initially introduced and future opportunities of DFAFC including the development of catalyst for the anode electrode and electrolyte, and design for the optimization of cell structure are discussed.

1kW RPG design and its stack performance model development (1kW급 가정용 연료전지 시스템 설계 및 스택 성능 예측 모델 개발)

  • Kim, Min-Jin;Sohn, Young-Jun;Lee, Won-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.287-287
    • /
    • 2009
  • 연료전지는 전기에너지와 열에너지를 동시에 사용 할 수 있기 때문에 에너지 효율이 높고 유해 배기물이 거의 없으므로 친환경적이다. 따라서 환경문제가 대두되고 있는 오늘날, 고효율 친환경의 연료 전지는 차세대 에너지원으로 각광받고 있다. 보일러와 계통선에서 열과 전기를 공급받는 기존방식에 비해 연료전지 코제너레이션 시스템의 경우 20%이상 에너지 절감율을 향상시킬 수 있다. 기존 10kW이하의 소용량 발전설비의 경우 대형 발전소와 같은 수준인 30%이상의 전기 효율을 기대할 수 없으나 고분자 전해질 연료전지를 적용할 경우 1kW급에서도 35%의 전기 효율을 기대할 수 있으며 열회수까지 고려할 경우 80%에 가까운 열효율을 달성할 수 있다.(4)연료전지 시스템은 연료전지 스택 이외에, 연료변환장치, 급기설비, 열 및 물관리 설비, 전력변환장치 그리고 제어 장치 등으로 구성된다. 연료전지 시스템 성능은 연료전지 스택의 성능에 가장 의존적인데 연료전지 스택의 성능은 같은 스택이라도 운전 및 제어 방법에 따라서 다양하게 변할 수 있다. 실제로 연료전지 스택 자체의 전기 변환 효율은 최대 40% 까지로 매우 높으나, 다양한 운전 조건에 따라 효율이 30~40% 수준에서 변화는 것이 현실이다. 때문에 시스템을 설계할 때에는 종합화된 시스템 측면에서의 운전까지 고려한 설계와 성능 해석이 필요하다. 그간 연료전지를 활용한 가정용 열병합 발전분야에서는 시스템 설계를 위한 시뮬레이션 기반 성능 해석에 관한 연구가 활발히 진행되어왔다. 하지만 연료전지 스택의 경우 간이화된 성능 모델식을 사용하여 이로 인한 성능 예측모델의 오차가 크게 발생하여 전체 시스템 최적화의 저해요인으로 작용하여왔다. 따라서 본 연구에서는 가정용 연료전지 열병합 발전 시스템을 자체적으로 설계 개발하였으며 이 중 연료전지 스택의 성능모델을 실험기반으로 구축하였다. 먼저 가정용 연료전지 열병합 발전 시스템의 설계는 크게 네 단계로 구분되며 이는 1) 시스템 개념 설계, 2) 연료전지 스택 설계, 3) 주변장치 설계, 4) 제어시스템 설계로 이뤄진다. 연료전지 스택의 성능 모델은 고분자연료전지의 성능에 가장 민감하게 영향을 미치는 온도 및 습도의 변화에 따른 다양한 스택 성능을 예측 가능하도록 개발하였으며 이는 간단한 이론 모델의 구조에 실험 데이터를 기반으로 모델 파라미터를 도출하는 기법으로 이뤄졌다.

  • PDF

PEMFC Optimization Design Using Genetic Algorithm (유전자 알고리즘을 이용한 고분자 전해질 연료전지 최적화 설계)

  • Yang, Woo-Joo;Wang, Hong-Yang;Lee, Dae-Hyung;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.889-897
    • /
    • 2014
  • This paper presents a method for finding an optimized result by using a genetic algorithm (GA) based on a PEMFC analysis result. The conventional analysis method designs fuel cells one-by-one, and each result is compared to obtain the best performance. Because the computational burden of the conventional analysis is enormous, the present optimization process provides an inefficient tool by automatically setting the boundary and material properties and mesh generation. As the change can be reflected automatically in the channel geometry with GA, the fuel cell analysis result with various sizes can be obtained easily. Therefore, the global maximum performance can be obtained through a GA optimization procedure.

Development of MBOP for 125 kW Molten Carbonate Fuel Cell (125kW급 용융탄산염 연료전지 MBOP 개발 및 성능평가결과)

  • Kang, Seung Won;Lee, Junghyun;Kim, Beumju;Kim, Do-Hyung;Kim, Eui-Hwan;Lim, Hee Chun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.130.2-130.2
    • /
    • 2010
  • 한전 전력연구원에서는 2009년 12월부터 125 kW급 용융탄산염 연료전지 발전시스템의 성능평가를 위한 운전이 진행되고 있다. 현재 진행 중인 "250 kW급 열병합 용융탄산염 연료전지 Proto Type개발" 과제의 최종시작품인 250 kW급 발전시스템은 125 kW급 MCFC 스택 2기로 설계되어, 125 kW급 시스템의 시험운전은 매우 중요한 기술적 성과가 될 것이다. 현재 125 kW급 MCFC 스택은 10,000 $cm^2$의 유효전극면적을 갖는 단위전지들로 구성되었으며, 적층 스택의 온도 및 농도분포의 최적화를 위해 내부 매니폴드 및 Co-flow Type 열교환기 기반의 분리판을 개발 적용하였다. 연료극의 전극 구성은 Ni-Al alloy로, 공기극의 전극 구성은 Lithiated-NiO로 이루어졌다. 그리고 매트릭스는 ${\alpha}-LiAlO_2$로 제작되었고, 전해질은 Li과 K Carbonate가 68 : 32 비율로 섞인 용융염을 사용하였다. 본 125 kW급 용융탄산염 연료전지 시스템의 운전평가는 고적층 스택의 온도 및 농도 분포를 확인하고, 최적화된 스택 운전 조건을 도출하는 것을 그 목적으로 하고 있다. 125kW급 스택 1기의 규모의 주변기기 시스템은 외부개질기, 촉매연소기, 이젝터, 고온순환 블로어 및 공기블로어 등으로 이루어져 있다. 고온형 연료전지 시스템에서 연료극과 공기극의 균일한 온도 및 압력 확보는 매우 중요하며, 이를 위하여 외부개질기 및 촉매연소기 연동을 통한 온도편차를 최소화하고, 기존 고온용 순환 블로어 대신 이젝터를 개발 도입하여 압력균형을 조절하였다. 125kW급 MCFC 시스템은 2009년 12월부터 전처리 운전을 시작하여 2010년 1월 말부터 PCS로 전기를 생산하고 있다. 평균전압 0.83V에서 100kW의 출력을 기록하였으며, 피크부하 120 kW, 누적출력량 30 MWh를 초과달성하였다.

  • PDF

Power Distribution Optimization of Multi-stack Fuel Cell Systems for Improving the Efficiency of Residential Fuel Cell (주택용 연료전지 효율 향상을 위한 다중 스택 연료전지 시스템의 전력 분배 최적화)

  • TAESEONG KANG;SEONGHYEON HAM;HWANYEONG OH;YOON-YOUNG CHOI;MINJIN KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.4
    • /
    • pp.358-368
    • /
    • 2023
  • The fuel cell market is expected to grow rapidly. Therefore, it is necessary to scale up fuel cells for buildings, power generation, and ships. A multi-stack system can be an effective way to expand the capacity of a fuel cell. Multi-stack fuel cell systems are better than single-stack systems in terms of efficiency, reliability, durability and maintenance. In this research, we developed a residential fuel cell stack and system model that generates electricity using the fuel cell-photovoltaic hybrid system. The efficiency and hydrogen consumption of the fuel cell system were calculated according to the three proposed power distribution methods (equivalent, Daisy-chain, and optimal method). As a result, the optimal power distribution method increases the efficiency of the fuel cell system and reduces hydrogen consumption. The more frequently the multi-stack fuel cell system is exposed to lower power levels, the greater the effectiveness of the optimal power distribution method.