• Title/Summary/Keyword: 연료분사

Search Result 929, Processing Time 0.03 seconds

Gasoline fuel injection system (가솔린 연료 분사장치)

  • 이우진
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.5-12
    • /
    • 1981
  • 최근 세계의 자동차업계에 문제가 되고 있는 연료경제 및 배기공해와 더불어 출력향상을 위하여 채택되고 있는 가솔린 기관의 연료분사장치는 유럽을 중심으로 하여 미국 및 일본에서 급속하게 발전되고 있으며 상당한 수의 자동차가 이를 장착, 주행하고 있어 향후 이러한 추세는 더욱 늘어날 전망에 있으므로 우선 이에 대한 개요를 소개함으로써 국산자동차의 기술적 향상에 기여 코자 한다.

  • PDF

Effects of Fuel Injection Timing on Performance in Old Marine Diesel Engine (Using M/S "Hae Rim" of Training Ship) (선박용 노후 디젤기관의 성능에 미치는 연료 분사시기의 영향(실습선 "해림호"를 중심으로))

  • Lim, Jae-Keun;Cho, Sang-Gon;Lee, Ho-Heon;Im, Hyung-Sup
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.5
    • /
    • pp.525-530
    • /
    • 2013
  • In this study, the generator engine of training ship M/S "HAE RIM" of Kunsan National University which is being operated for 20 years was used in the experiment. The experiment was carried out under the engine speed of 1200rpm, then the load was varied 30 kW intervals from 0 to 90 kW and the injection timing was varied $2^{\circ}$CA intervals from BTDC $19^{\circ}$ to $23^{\circ}$CA. In the case of advancing fuel injection timing from BTDC $21^{\circ}$CA to $23^{\circ}$CA, specific fuel consumption is decreased by 1.37%, NOx is increased by 11.59 %, soot is decreased by 23.5 % and $SO_2$ is decreased by 2.8 %. Accoring to the analysis of effects of fuel injection timing on combustion & exhaust emissions characteristics on an old marine diesel engine, it is proved that the optimum fuel injection timing is BTDC $23^{\circ}$ which is $2^{\circ}$ faster than that of original injection timing.

Effects of Fuel Injection Timing on Exhaust Emissions Characteristics of Biodiesel Blend Oil in Diesel Engine (디젤기관에서 바이오디젤 혼합유의 배기배출물 특성에 미치는 연료분사시기의 영향)

  • Lim, Jae-Keun;Cho, Sang-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.603-608
    • /
    • 2012
  • Recently we have a growing interest in environmental pollution and alternative energy. Diesel engine is generally used to produce the power on shore and sea. However, the combustion characteristics and exhaust emissions of the engine are changed on account of the wear of fuel system and the altered ambient condition of the combustion chamber by the increment of the engine operation hour. Therefore the combustion characteristics and exhaust emissions on the fuel injection timing were experimentally investigated to find out the optimum fuel injection timing in case of the about 20 years used diesel engine using biodiesel blend oil. The original fuel injection timing of the engine is BTDC $22^{\circ}$ CA. However, it is found that the optimum fuel injection as a result of analyzing the specific oil consumption and exhaust emissions of 20 years used the engine is BTDC $26^{\circ}$ CA.

Experimental Study on Fuel/Air Mixing using the Cavity in the Supersonic Flow (초음속 유동장 내의 공동을 이용한 연료/공기 혼합에 관한 실험적 연구)

  • Kim Chae-Hyoung;Jeong Eun-Ju;Jeung In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.64-71
    • /
    • 2005
  • To achieve efficient supersonic combustion within a manageable length, a successful fuel injection scheme must provide rapid mixing between fuel and airstream. In former days, various injection concepts have been investigated. Cavity flow is the open type, that is, length-to-depth ratio L/D=4.8, aft ramp angle is $22.5^{\circ}$. An experimental study on a transverse cross jet injection into a Mach 1.92 supersonic main stream which flows over a cavity was carried out to investigate the effect of the momentum flux ratio(J), the jet interaction characteristics, and the pressure distribution in the combustor and using the primary diagnostics : schlieren visualization and wall static pressure measurements. Fuel penetration height and jet interaction characteristics depend strongly on the momentum flux ratio.

  • PDF

Flow Analyses for the Uniform Distribution of Propellants at Manifolds of a Full-scale Gas Generator (가스발생기 연료 및 산화제 매니폴드 유동해석을 통한 유량균일성 파악)

  • Kim, Hong-Jip;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1140-1147
    • /
    • 2009
  • Flow analyses have been performed to investigate the uniformity of propellant flow through the fuel and oxidizer manifolds of a full-scaled gas generator for a pump-fed liquid rocket engines. Injectors were simulated as porous medium layers having equivalent pressure drops. The uniformity of propellants has been analyzed for 3 fuel rings and 3 injector head configurations. The mixture ratio distribution at the exit of injectors has been estimated from the mass flow rates of fuel and oxidizer. The best configuration of fuel ring and injection head was selected through these flow analyses.

대기오염 저감을 위한 차량연료의 최적연소 시스템 설계

  • Lee, Gwang-Hyeong;Min, So-Yeon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.835-838
    • /
    • 2009
  • 본 논문은 환경공해의 주범인 자동차의 매연을 감소할 수 있는 방법에 대한 연구이다. 자동차 매연의 주요원인은 연료의 불완전 연소와 연료 자체의 특성때문이다. 따라서 본 논문에서는 가솔린/경유 차량을 CNG/LPG 차량으로 대체하고 CNG/LPG연료의 특성을 감안하여 연료의 공급과 분사량, 분사시간을 차량 ECU에서 보내지는 신호를 기본데이터로 차량의 가속과 감속 아이들 상태에서 차량을 적응적으로 최적화 할 수 있게 실시간으로 보정데이터를 계산한다. 본 논문의 결과로 기존의 구조변경차량의 출력에서 20%이상, 배기가스 에서 10% 이상의 향상되었다.

  • PDF

Spray characteristics and performance of pressure swirl simplex injector for heavy duty industrial gas turbines (대형가스터빈용 단일 압력 선회식 연료분사기의 분무 특성 및 성능 평가)

  • Seok, Jungmin;Jeong, Hanjin;Choi, Inchan;Kim, Jaiho;Lee, Sanghoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.892-895
    • /
    • 2017
  • As a component development of heavy duty industrial gas turbine combustor development program, pressure swirl simplex injector was designed and tested to figure out spray characteristics and performance. Injector flow rate as a function of pressure drop was measured and compared to the design target. Also spray shape was analyzed qualitatively and spray cone angle was measured from spray visualization image using shadowgraph. The flow test result showed that the injector was designed and manufactured correctly according to the design target and spray cone angle was measured from shadowgraph result. As a next step, PDA (Phase Doppler Anemometry) measurement is planned to figure out more specific spray performance and characterization.

  • PDF

Characteristics of Dual Transverse Injection in Supersonic Flow Fields I-Mixing Characteristics (초음속 유동장 내 이중 수직분사의 특성에 관한 연구 I-혼합특성)

  • Shin, Hun-Bum;Lee, Sang-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.53-60
    • /
    • 2002
  • Based on the analyses of the single transverse injection in supersonic flow fields, the mixing characteristics of dual transverse injection of hydrogen in supersonic air flow are studied with computational methods. Three-dimensional Navier -Stokes and the k-$\omega$ SST turbulence model were used. A parametric study is conducted with the variation of the distance between two injectors. The flow patterns and the mixing characteristics of two injection flows are very different from each other, and the flow patterns and the mixing characteristics of the rear injection flow are strongly influenced by those of the first injection flow. The increase of the distance between two injectors up to a specific distance results in the increase of mixing rate and penetration of fuel. However, the increase of the distance over the specific distance results in the decrease of mixing rate and penetration of fuel. From the results it can be stated that there exists a distance between two injectors for optimum mixing characteristics.

Numerical Analysis of Combustion Field for Different Injection Angle in End-burning Hybrid Combustor (End-burning 하이브리드 연소기 인젝터 분사각에 따른 연소 유동장의 수치적 연구)

  • Yoon, Chang-Jin;Kim, Jin-Kon;Moon, Hee-Jang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1108-1114
    • /
    • 2007
  • The effect of oxidizer injection angle on the combustion characteristics of end-burning hybrid combustor is numerically investigated. Besides the previously studied parameter(injector arrangement, port diameter and O/F ratio), three different injection angle are considered: parallel angle to fuel surface(Case 1), +30 degree inclined angle toward the fuel(Case 2) and 30 degree inclined angle toward the nozzle(Case 3). It is found that Case 2 has the best mixing pattern in the upstream area but has the worst combustion efficiency since non negligible amount of unburned fuel is expelled from the nozzle. In contrast, though Case 1 and Case 3 showed relatively low mixing effect than the Case 2, they had high combustion efficiency. The comparison of numerical results between Case 1 and Case 3 demonstrate that no major difference is encountered, however, Case 1 is expected to have the best combustion efficiency due to the low residence time of the Case 3 injector which heads toward the nozzle.