• Title/Summary/Keyword: 연료과잉 연소

Search Result 60, Processing Time 0.023 seconds

A Study of Flame Visualization of the APU Gas Turbine Engine Sector Combustor (APU용 가스터빈 엔진 분할연소기의 화염가시화 연구)

  • Kim, Bo-Ra-Mi;Choi, Chea-Hong;Choi, Seong-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.11-17
    • /
    • 2011
  • In order to see flame behavior in the annular reverse gas turbine combustor, sector combustion test was performed. Ignition test by using torch ignition system was carried out at various combustor inlet velocity and air fuel ratio. Also, flame blow out limit was measured by changing fuel flow rate with constant air mass flow rate. In test results, stable ignition is possible at air excess ratio of 6 and this limit is gradually increased with combustor inlet velocity. The minimum blow out limit is about 4 at 40 m/s of combustor inlet velocity. This blow out limit is also increased up to about 10 with increasing combustor inlet velocity. Test result shows that lean blow out limits are increased with air velocity. The highest blow out limit was found at the combustor inlet velocity of 65 m/s.

A Study of Flame Visualization of the APU Gas Turbine Engine Sector Combustor (APU용 가스터빈 엔진 분할연소기의 화염가시화 연구)

  • Kim, Bo-Ra-Mi;Choi, Chea-Hong;Choi, Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.153-159
    • /
    • 2010
  • In order to see the flame behavior in the annular reverse gas turbine combustor, sector combustion test was performed. Ignition test by using torch ignition system was carried out at the various combustor inlet velocity and air fuel ratio. Also, flame blow out limit was measured by changing fuel flow rate with constant air mass flow rate. In the test results, stable ignition is possible at air excess ratio of 6 and this limit is gradually increased with combustor inlet velocity. The minimum blow out limit is about 4 at 40 m/s of combustor inlet velocity. This blow out limit is also increased up to about 10 with increasing combustor inlet velocity. Test result shows that lean blow out limits are increased with air velocity. The highest blow out limit was found at the combustor inlet velocity of 65m/s.

  • PDF

Raumliche flammenausbreitung und "flame quenching" bei ottomotorischer verbrennung (오토엔진의 공간적 화염전파와 "Flame Quenching")

  • Pischinger, F.;Spicher, U.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.58-67
    • /
    • 1984
  • 공간적 화염전파에 대한 실험적인 파악을 통하여 오토엔진에서의 연소과정과 진행을 위한 깊은 통찰을 할 수 있다. 그것을 통하면 매우 희박한 공기, 연료 혼합기의 경우 실린더에서 직접소염 과정을 확인할 수도 있고 hydrocarbon의 불완전 연소와 나타나는 qunching zone간의 관계를 조사할 수도 있다. 광전도 섬유기술(Lichtleit-fasertechnik)을 사용하여 새로 개발된 측정방법을 이용하여 단기통 오토엔진에서 화염면의 공간적인 전파과정과 매우 희박한 공기 연료 혼합기 에서의 quench zone의 출현을 조사하였다. 측정결과들은 공기연료 혼합기가 희박해 질수록 화 염전파 과정이 점점 느려지는 것을 보여준다. 아주 높은 공기 과잉율을 갖는 엔진 운전에서는 화염속도와 연소속도가 매우 급하게 감소한다. 그리하여 화염면은 팽창 단계에서 상대적으로 증가하는 피스톤속도 때문에 더이상 피스톤을 따를 수가 없으며 그로 인해 직접 피스톤상부에 소염대가 형성된다. 그에 의해 배기가스에서의 hydrocarbon 방출의 급격한 증가와 효율이 급격히 감소하는 엔진 운전과 관련이 지어진다.

  • PDF

An Experimental Study of the Rocket Preburner Injector (로켓 프리버너 분사기의 성능특성 연구)

  • Yang, Joon-Ho;So, Youn-Seok;Choi, Hyun-Kyung;Choi, Seong-Man;Han, Young-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.47-53
    • /
    • 2006
  • The oxidizer-rich preburner is applied to the high efficiency closed cycle rocket propulsion system. This system is generally operated on oxidizer-fuel mixture ratio over than 50. The spray quality and mixing performance are very important for safe combustion of this preburner. This paper presents basic concept and spray characteristic of the preburner injector.

  • PDF

Prediction of Propellants Distribution of an Oxidizer Rich Preburner with Honeycomb Array of injectors (벌집형 분사기 배열을 갖는 산화제 과잉 예연소기에서의 추진제 분포 예측)

  • Moon, Il-Yoon;Moon, In-Sang;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.614-615
    • /
    • 2010
  • The propellants distribution of an oxidizer rich preburner was predicted by a simplified physical approach. The Mixing head is composed of honeycomb array of 7 fuel injectors and 24 oxidizer injectors. The OF ratio of the mixing head is 15. As results, the OF ratio of the central area is about 9 and the OF ratio of the wall area is about 30.

  • PDF

Combustion Chamber Development for Suppression of Combustion Instability in a Gas Generator at a Liquid Rocket Engine (액체로켓엔진용 가스발생기에서 연소불안정 방지를 위한 연소실 개발)

  • Ahn Kyu-Bok;Lee Kwang-Jin;Lim Byoung-Jik;Han Yeoung-Min;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.207-210
    • /
    • 2005
  • The results of combustion performance test of fuel-rich gas generator with dual swirl injectors are described. By changing simulating duct and recess number(RN) of the injectors, we inspected whether the combustion instability took place. When the injectors of RN = 0.5 were used, combustion instabilities could be reduced using the simulating duct. However, the effect of the simulating duct on the gas generator with the injectors of RN = 1.5 was not significant.

  • PDF

Diagnosis of the Combustion Characteristics of Spark Ignition Engine with Compressed Natural Gas(CNG) Injection Type (압축천연가스(CNG) 분사식 스파크점화엔진의 연소특성 진단)

  • Ha, D.H.;Jin, J.M.;Hwang, S.I.;Yeom, J.K.;Chung, S.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.5-12
    • /
    • 2012
  • 희박예혼합기의 급속연소에 관한 연구를 위하여 2-실린더 가솔린 엔진을 부실 타입의 압축천연가스(CNG) 분사 엔진으로 개조하였다. 본 연구에서는 부실의 최적설계에 관심을 두고 두 종류의 부실을 적용하여 실험을 실시하였고, 부실의 체적과 홀 개수는 1.5cc와 6개로 각각 동일하게 하고, 홀 직경을 0.8mm 및 1.1mm로 달리하였다. CNG연료는 포트연료분사(Port fuel injection; PFI)와 부실분사(Sub-chamber injection; SCI)에 의해 엔진에 독립적으로 공급되고, 그 실험결과로 구한 연소압력, 평균유효압력(IMEP), 질량연소분율과 사이클변동계수(COV) 등을 서로 비교하였다. 본 연구의 대표적 실험연구결과로서 PFI 타입의 엔진연소특성은 희박예혼합기의 경우를 제외하고 모든 조건에 있어서 기존의 가솔린 엔진과 비슷하였고, SCI 타입의 엔진연소특성으로 평균유효압력은 부실 내에 불완전 예혼합기형성으로 PFI 타입보다 낮았으며, COV는 SCI 타입이 희박가연한계가 확대됨으로 인하여, 특히 높은 공기과잉률 범위에서 PFI 타입과 비교해 보다 좋은 결과를 나타내었다.

Study of Performance and Knock Characteristics with Compression Ratio Change in HCNG Engine (HCNG 엔진에서 압축비 변경에 따른 성능 및 노킹 특성 연구)

  • Lim, Gi Hun;Lee, Sung Won;Park, Cheol Woong;Choi, Young;Kim, Chang Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.387-394
    • /
    • 2013
  • Hydrogen-compressed natural gas (HCNG) blend has attracted attention as a fuel that can reduce $CO_2$ emissions because it has low carbon content and burns efficiently. An increase in the compression ratio of HCNG engines was considered as one of the methods to improve their efficiency and reduce $CO_2$ emissions. However, a high combustion rate and flame temperature cause abnormal combustion such as pre-ignition or knocks, which in turn can cause damage to the engine components and decrease the engine power. In this study, the performance and knock characteristics with a change in the compression ratio of an HCNG engine were analyzed. The combustion characteristics of HCNG fuel were evaluated as a function of the excess air ratio using a conventional CNG engine. The effects of the compression ratio on the engine performance were evaluated through the same experimental procedures.

Emission Reduction Characteristics of Three-way Catalyst with Engine Operating Condition Change in an Ultra-lean Gasoline Direct Injection Engine (초희박 직접분사식 가솔린 엔진용 삼원촉매의 운전조건에 따른 배기저감 특성)

  • Park, Cheol Woong;Lee, Sun Youp;Yi, Ui Hyung;Lee, Jang Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.727-734
    • /
    • 2015
  • Recently, because of the increased oil prices globally, there have been studies investigating the improvement of fuel-conversion efficiency in internal combustion engines. The improvements realized in thermal efficiency using lean combustion are essential because they enable us to realize higher thermal efficiency in gasoline engines because lean combustion leads to an increase in the heat-capacity ratio and a reduction of the combustion temperature. Gasoline direct injection (GDI) engines enable lean combustion by injecting fuel directly into the cylinder and controlling the combustion parameters precisely. However, the extension of the flammability limit and the stabilization of lean combustion are required for the commercialization of GDI engines. The reduction characteristics of three-way catalysts (TWC) for lean combustion engines are somewhat limited owing to the high excess air ratio and low exhaust gas temperature. Therefore, in the present study, we assess the reaction of exhaust gases and their production in terms of the development of efficient TWCs for lean-burn GDI engines at 2000 rpm / BMEP 2 bar operating conditions, which are frequently used when evaluating the fuel consumption in passenger vehicles. At the lean-combustion operating point, $NO_2$ was produced during combustion and the ratio of $NO_2$ increased, while that of $N_2O$ decreased as the excess air ratio increased.

Comparison of Combustion, Emissions and Efficiency Characteristics as Varying Spark Timings and Excess air ratios in an Ammonia-fueled Direct Injection Spark Ignition Engine (직접분사식 암모니아 전소 엔진에서 점화 시기와 공기과잉률의 변경에 따른 연소 및 배기, 효율 특성 비교)

  • Yonghun Jang;Cheolwoong Park;Yongrae Kim;Young Choi;Chanki Min;Seungwoo Lee;Hongkil Baek;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • Due to the development of the industrial revolution, regulations on exhaust emissions have been continuously strengthened to reduce the rapidly increasing greenhouse gas emissions. The use of environmentally friendly fuels is essential to meet these regulations. Hydrogen has been attracting attention as a future environmentally friendly fuel, but due to its material properties, it faces significant challenges in handling and storage. As an alternative, ammonia has been proposed. Ammonia can be easily liquefied at room temperature compared to hydrogen and has a high energy density. In order to examine the applicability of ammonia as an engine fuel, experiments were conducted to investigate the effects of changes in combustion control parameters in a direct injection ammonia combustion engine. The experiments were conducted by varying two variables: spark timing and excessive air ratio. Observations were made on combustion stability and the trends of exhaust emissions such as nitrogen oxides and unburned ammonia under the conditions of an engine speed of 1,500 rpm and medium to high loads (brake torque of 200 Nm). By optimizing the combustion control parameters, conditions for stable combustion even when using ammonia as the sole fuel were identified, and plans are underway to apply strategies for future expansion of the operating range.