• Title/Summary/Keyword: 연관규칙 탐사

Search Result 132, Processing Time 0.026 seconds

The application for predictive similarity measures of binary data in association rule mining (이분형 예측 유사성 측도의 연관성 평가 기준 적용 방안)

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.3
    • /
    • pp.495-503
    • /
    • 2011
  • The most widely used data mining technique is to find association rules. Association rule mining is the method to quantify the relationship between each set of items in very huge database based on the association thresholds. There are some basic association thresholds to explore meaningful association rules ; support, confidence, lift, etc. Among them, confidence is the most frequently used, but it has the drawback that it can not determine the direction of the association. The net confidence and the attributably pure confidence were developed to compensate for this drawback, but they have other drawbacks.In this paper we consider some predictive similarity measures for binary data in cluster analysis and multi-dimensional analysis as association threshold to compensate for these drawbacks. The comparative studies with net confidence, attributably pure confidence, and some predictive similarity measures are shown by numerical example.

Study on the Usability Based on Web Mining in Army College Library Homepage (웹마이닝을 통한 도서관 홈페이지의 사용편의성에 관한 연구 - 육군대학 도서관 홈페이지를 중심으로 -)

  • 손용배;이응봉
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2001.08a
    • /
    • pp.213-218
    • /
    • 2001
  • 본 연구는 육군대학 도서관 홈페이지의 웹서버에 저장되어 있는 로그파일을 실험 데이터로 사용하여, 기존 데이터마이닝(data mining)의 기법들 중에서 연관규칙(association rules) 탐사 기법을 적용함으로써, 사용자들의 웹 항행에 대한 순차패턴을 추출하였다. 이를 분석하여 실제 사용자들이 효과적으로 사용할 수 있는 웹사이트 디자인을 제안하고 나아가 대상 웹사이트의 사용편의성을 평가하였다.

  • PDF

Mining Frequent Service Patterns using Graph (그래프를 이용한 빈발 서비스 탐사)

  • Hwang, Jeong-Hee
    • Journal of Digital Contents Society
    • /
    • v.19 no.3
    • /
    • pp.471-477
    • /
    • 2018
  • As time changes, users change their interest. In this paper, we propose a method to provide suitable service for users by dynamically weighting service interests in the context of age, timing, and seasonal changes in ubiquitous environment. Based on the service history data presented to users according to the age or season, we also offer useful services by continuously adding the most recent service rules to reflect the changing of service interest. To do this, a set of services is considered as a transaction and each service is considered as an item in a transaction. And also we represent the association of services in a graph and extract frequent service items that refer to the latest information services for users.

Utilization of similarity measures by PIM with AMP as association rule thresholds (모든 주변 비율을 고려한 확률적 흥미도 측도 기반 유사성 측도의 연관성 평가 기준 활용 방안)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.1
    • /
    • pp.117-124
    • /
    • 2013
  • Association rule of data mining techniques is the method to quantify the relationship between a set of items in a huge database, andhas been applied in various fields like internet shopping mall, healthcare, insurance, and education. There are three primary interestingness measures for association rule, support and confidence and lift. Confidence is the most important measure of these measures, and we generate some association rules using confidence. But it is an asymmetric measure and has only positive value. So we can face with difficult problems in generation of association rules. In this paper we apply the similarity measures by probabilistic interestingness measure (PIM) with all marginal proportions (AMP) to solve this problem. The comparative studies with support, confidences, lift, chi-square statistics, and some similarity measures by PIM with AMPare shown by numerical example. As the result, we knew that the similarity measures by PIM with AMP could be seen the degree of association same as confidence. And we could confirm the direction of association because they had the sign of their values, and select the best similarity measure by PIM with AMP.

Generating Large Items Efficiently For Mining Quantitative Association Rules (수량적 연관규칙탐사를 위한 효율적인 고빈도항목열 생성기법)

  • Choe, Yeong-Hui;Jang, Su-Min;Yu, Jae-Su;O, Jae-Cheol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.10
    • /
    • pp.2597-2607
    • /
    • 1999
  • In this paper, we propose an efficient large item generation algorithm that overcomes the problem of the existing algorithm for making large items from quantitative attributes. The proposed algorithm splits dataset into variable size of intervals by min_split_support and merges the intervals according to the support of each interval. It reflects characteristic of data to generated large items and can generate finer large items than the existing algorithm. It is shown through the performance evaluation that our proposed algorithm outperforms the existing algorithm.

  • PDF

Discovering News Keyword Associations Using Association Rule Mining (연관규칙 마이닝을 활용한 뉴스기사 키워드의 연관성 탐사)

  • Kim, Han-Joon;Chang, Jae-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.63-71
    • /
    • 2011
  • The current Web portal sites provide significant keywords with high popularity or importance; specifically, user-friendly services such as tag clouds and associated word search are provided. However, in general, since news articles are classified only with their date and categories, it is not easy for users to find other articles related to some articles while reading news articles classified with categories. And the conventional associated keyword service has not satisfied users sufficiently because it depends only upon user queries. This paper proposes a way of searching news articles by utilizing the keywords tightly associated with users' queries. Basically, the proposed method discovers a set of keyword association patterns by using the association rule mining technique that extracts association patterns for keywords by focusing upon sentences containing some keywords. The method enables users to navigate the space of associated keywords hidden in large news articles.

A Design and Implementation of Expert Search Engine Using DataMining (데이타마이닝을 이용한 전문 검색엔진의 설계 및 구현)

  • Hwang, Bo-Youn;Kim, Byung-Chan;Kim, Young-Ji;Mun, Hyeong-Jeong;Woo, Yong-Tae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.04a
    • /
    • pp.43-46
    • /
    • 2001
  • 본 논문에서는 데이타마이닝 기법을 이용하여 지능형 전문 검색엔진을 설계하고 사용자 인터페이스를 구현하였다. 먼저, 컴퓨터 분야의 전문 용어에 대하여 연관 규칙 탐사 알고리즘을 이용하여 의미적으로 연관된 용어들끼리 클러스터로 구성하였다. 전문 용어별로 구성된 클러스터는 본 논문에서 제안한 지식베이스 테이블에 저장하여 의미적으로 연관된 용어를 포함하는 웹 문서를 검색하는 과정에서 이용하였다. 검색과정에서는 사용자가 제시한 키워드와 관련된 전문 용어들간의 연관정도를 가중치로 부여하여 연관 정도가 높은 웹 문서순으로 출력하였다. 제안된 방법을 통하여 사용자가 제시한 키워드와 의미적으로 연관된 웹 문서를 효과적으로 검색할 수 있었다.

  • PDF

Design and Implementation of Rule Discovery Algorithm strongly coupled with Time-series databases (시계열 데이터베이스와 강결합된 규칙발견 알고리즘 설계와 구현)

  • 박인창;김성규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.43-45
    • /
    • 2001
  • 마이닝 시스템은 그 특성에 따라 매우 다른 형태의 구현 방법이 존재한다. 그러므로 마이닝 시스템간 호환성이나 재사용성은 매우 낮다. 본 노문에서는 이 문제를 시계열 데이터베이스를 통한 RDB와 강 결합함으로써 표준화에 대한 문제를 해겨라고자 시도하였다. RDB와의 강 결합은 표준화 문제를 해결함과 더불어 마이닝 시스템에 DBMS의 관련 기술을 이용함으로써 성능을 극대화시킨다. 특히 DBMS의 인텍스 기능을 이용함으로써 마이닝 시스템의 성능 향상을 시도하였다. 본 논문에서는 기존의 순차패턴 탐사의 시간개념 부재, 트랜잭션 데이터베이스 기반구조, 그리고 알고리즘 수행에 있어서 메모리 한계에 따른 문제등의 단점을 지적하고, 이를 수정하고 보완하기 위해서 시간 거리와 패턴 길이의 개념을 확장하였으며 그에 따른 연관규칙의 관련 공식을 수정 보완하여 제안한다. 또한 RDB와의 강 결합되어 기존의 트랜잭션 데이터베이스 구조를 벗어나 시계열 데이터에 보다 쉽게 적용할 수 있는 절차와 알고리즘을 제안한다.

  • PDF

Anti-Fraud System for Credit Card By Using Hybrid Technique (Hybrid 기법을 적용한 효율적인 신용카드판단시스템)

  • 조문배;박길흠
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.5
    • /
    • pp.25-32
    • /
    • 2004
  • An anti-fraud system that utilizes association rules of fraud as well as AFS (Anti Fraud System) for credit card payments in e-commerce is proposed. The association rules are found by applying the data mining algorithm to millions of transaction records that have been generated as a result of orders on goods through the Internet. When a customer begins to process an order by using transaction components of a secure messaging protocol, the degree of risk for the transaction is assessed by using the found rules. More credit information will be requested or the transaction is rejected if it is interpreted as risky.

Network Anomaly Detection based on Association among Packets (패킷간 연관 관계를 이용한 네트워크 비정상행위 탐지)

  • 오상현;이원석
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.5
    • /
    • pp.63-73
    • /
    • 2002
  • Recently, intrusions into a computer have been increased rapidly and also various intrusion methods have been developed. As a result. many researches have been performed to detect the activities of intruders effectively In this paper, a new association mining algorithm for anomaly network intrusion detection is proposed. For this purpose, the proposed algorithm is composed of two different phases: intra-packet association and inter-packet association. The performance of the proposed anomaly detection system is evaluated based on several experiment according to various system parameters in order to identify their practical ranges for maximizing its detection rate. As a result, an anomaly can be detected effectively.