• Title/Summary/Keyword: 연간교통량

Search Result 17, Processing Time 0.033 seconds

Estimation on the Future Traffic Volumes and Analysis on Crossing Situation Risk for Gamcheon Harbor (감천항의 장래 교통량 추정 및 교차상태위험 분석)

  • Kim, Jung-Hoon;Gug, Seung-Gi;Kim, Min-Cheol
    • Journal of Navigation and Port Research
    • /
    • v.30 no.8 s.114
    • /
    • pp.617-622
    • /
    • 2006
  • Gamcheon Harbor was developed to cope with increased freight demand of Busan port and supplement function of the north port. Because container wharf is opened to 1997 as well as general wharf, present maximum 50,000DWT class containerships have been incoming and outgoing. However, In Gamcheon port, small size ships such as fishing boats, miscellaneous boats account for 50 percent of the traffic and a public marine products wholesale market that is building on the north wharf will open in 2008. Therefore, it needs to grasp future year traffic volume before establishing operation plan for port management. Also, analysis on crossing situation risk is required because the breakwater entrance in Gamcheon Harbor is narrow and the crossed passing of ship is ever-present at breakwater front. Thus the traffic volume in the future was presumed and quantitative analysis was achieved on crossing situation though simulations with the traffic volume.

우리나라 연안교통량 분석을 통한 연안거리별 위험도 분석

  • Park, Yeong-Su;Lee, Sin-Geol;Lee, Yun-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.10a
    • /
    • pp.137-139
    • /
    • 2014
  • 우리나라 항만을 입출항하는 선박은 연간 390,245척(2013년)이며, 연안해역을 통항하는 선박은 우리나라 남해안이 세계에서도 통항척수가 많은 해역이다. 이러한 연안 해역에서 거리별 통항교통량 분포 및 해양사고 분포를 통하여 연안해역 거리별 위험도를 파악하여 교통량 분산 등을 유도하여 해상교통 안전을 향상시키는데 목적이 있다.

  • PDF

Estimation of Total Travel Time for a Year on National Highway Link with AADT (연평균 일일교통량을 이용한 일반국도구간 연간 총통행시간 추정 방법 개발)

  • Kim, Jeong Hyun;Suh, Sunduck;Kim, Taehee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.11-16
    • /
    • 2009
  • The estimation of total travel time on highway link for a day or year is the most important process for the feasibility analysis of highway or railway. Most of current guidelines for feasibility studies have been based on the time-traffic volume relationship from the BPR, and the traffic volumes have been determined by the application of the design hour factor to the annual average daily traffic volume. Both of the BPR function and the application of the design hour volume may result in the over-estimation of travel time due to the fact that the traffic volume on the large portion of highway links in Korea are close to the capacities. This study proposed a new way which is based on the distribution of hourly volumes for a year. It could be closer to the real situation, and provide more reasonable estimation. This methodology was validated for the national highways, but may be applicable for any type of highway with the AADT.

A Study on Characteristic Design Hourly Factor by Road Type for National Highways (일반국도 도로유형별 설계시간계수 특성에 관한 연구)

  • Ha, Jung-Ah
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.2
    • /
    • pp.52-62
    • /
    • 2013
  • Design Hourly Factor(DHF) is defined as the ratio of design hourly volume(DHV) to Average Annual Daily Traffic(AADT). Generally DHV used the 30th rank hourly volume. But this case DHV is affected by holiday volumes so the road is at risk for overdesigning. Computing K factor is available for counting 8,760 hour traffic volume, but it is impossible except permanent traffic counts. This study applied three method to make DHF, using 30th rank hourly volume to make DHF(method 1), using peak hour volume to make DHF(method 2). Another way to make DHF, rank hourly volumes ordered descending connect a curve smoothly to find the point which changes drastic(method 3). That point is design hour, thus design hourly factor is able to be computed. In addition road classified 3 type for national highway using factor analysis and cluster analysis, so we can analyze the characteristic of DHF by road type. DHF which was used method 1 is the largest at any other method. There is no difference in DHF by road type at method 2. This result shows for this reason because peak hour is hard to describe the characteristic of hourly volume change. DHF which was used method 3 is similar to HCM except recreation road but 118th rank hourly volume is appropriate.

Study on the Vessel Traffic Safety Assessment for Routeing Measures of Offshore Wind Farm (해상풍력발전단지의 대체통항로 통항안전성 평가에 관한 연구)

  • Yang, Hyoung-Seon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.186-192
    • /
    • 2014
  • In this paper, we analysed vessel traffic volume and patterns of traffic flow for ships using areas where included wind farm site and adjacent waters of Daejeong Offshore Wind Farm, and estimated traffic volume by classified navigational routes according to suggestion of rational routeing measures on the basis of classified patterns after installation of offshore wind facilities. Also, we assessed vessel traffic safety for each designed routeing measures on the basis of estimated traffic volume and proposed requisite countermeasures for the safe navigation of ships. With a result of analysing patterns of traffic flow, the current traffic flow was classified by 8 patterns and the annual traffic volume was predicted to 8,975 ships. On the basis of these, expected the vessel traffic volume according to designed four routeing mesaures after installation of wind farm. As result of assessing vessel traffic safety by using powered-vessel collision model of SSPA on the basis of the estimated traffic volume, the value of collision probability was less than safe criteria $10^{-4}$. Thereby we made sure usability of the designed routeing measures for the safe navigation of ships.

A Study on Performance Evaluation of Various Kriging Models for Estimating AADT (연평균 일교통량 산정을 위한 다양한 크리깅 방법의 성능 평가에 대한 연구)

  • Ha, Jung Ah;Oh, Sei-Chang;Heo, Tae-Young
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.4
    • /
    • pp.380-388
    • /
    • 2014
  • Annual average daily traffic(AADT) serves as important basic data in the transportation sector. AADT is used as design traffic which is the basic traffic volume in transportation planning. Despite of its importance, at most locations, AADT is estimated using short term traffic counts. An accurate AADT is calculated through permanent traffic counts at limited locations. This study dealt with estimating AADT using various models considering both the spatial correlation and time series data. Kriging models which are commonly used spatial statistics methods were applied and compared with each model. Additionally the External Universal kriging model, which includes explanatory variables, was used to assure accuracy of AADT estimation. For evaluation of various kriging methods, AADT estimation error, proposed using national highway permanent traffic count data, was analyzed and their performances were compared. The result shows the accuracy enhancement of the AADT estimation.

Estimation on the Future Traffic Volumes and Analysis on Information Value of Tidal Current Signal in Incheon (인천항의 장래 교통량 추정 및 조류신호의 정보가치 분석)

  • Kim, Jung-Hoon;Kim, Se-Won;Gug, Seung-Gi
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.455-462
    • /
    • 2007
  • This paper estimated the future traffic volume incoming and outgoing in Incheon port, and analyzed the value of information serviced by tidal current signal operation center in Incheon. The cargo traffic in 2020 will increase twice as much as in 2005 according to the national ports basis plan. The maritime traffic will increase greatly consequently. Also, MOMAF has operated tidal current signal operation center to prevent marine accidents caused by current influence on vessels navigating through Incheon. However the quantitative effect is not known because there is no analysis about its value. Therefore the value of information serviced by tidal current signal operation center in Incheon was calculated with contingent valuation method(CVM), and the information value was analyzed considering future traffic in this study. Thus, the annual information value was calculated at about $170{\sim}280$ million won, considered traffic volume using the information of tidal current directly in 2020 since 2006.

Directional Design Hourly Volume Estimation Model for National Highways (일반국도의 중방향 설계시간 교통량 추정 모형)

  • Lim, Sung-Han;Ryu, Seung-Ki;Byun, Sang-Cheol;Moon, Hak-Yong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.3
    • /
    • pp.13-22
    • /
    • 2012
  • Estimating directional design hourly volume (DDHV) is an important aspect of traffic or road engineering practice. DDHV on highway without permanent traffic counters (PTCs) is usually determined by the annual average daily traffic (AADT) being multiplied by the ratio of DHV to AADT (K factor) and the directional split ratio (D factor) recommended by Korea highway capacity manual (KHCM). However, about the validity of this method has not been clearly proven. The main intent of this study is to develop more accurate and efficient DDHV estimation models for national highway in Korea. DDHV characteristics are investigated using the data from permanent traffic counters (PTCs) on national highways in Korea. A linear relationship between DDHV and AADT was identified. So DDHV estimation models using AADT were developed. The results show that the proposed models outperform the KHCM method with the mean absolute percentage errors (MAPE).

Design Hourly Factor Estimation with Vehicle Detection System (차량검지기자료를 이용한 고속도로 설계시간계수 산정 연구)

  • Baek, Seung-Geol;Kim, Beom-Jin;Lee, Jeong-Hui;Son, Yeong-Tae
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.6
    • /
    • pp.79-88
    • /
    • 2007
  • Design Hourly Volume (DHV) is the hourly volume used for designing a section of road. DHV is also used to estimate the expected number of vehicles to pass or traverse the relevant section of road in a future target year. The Design Hour Factor (DHF) is defined as the ratio of DHV to Average Annual Daily Traffic (AADT). In addition to high precision of predicted traffic volume, in order to design a roadway to be the proper scale, applying appropriate DHFs considering traffic flow characteristics and type of area which surrounds the relevant roadway is important. This study categorizes sections of expressway (Suh Hae An Expressway) according to their area type and estimates DHFs utilizing traffic data obtained from a vehicle detection system (VDS). This study shows that DHFs calculated using VDS data are different from those using traffic data acquired from a coverage survey. While AADTs from both data show similar values, peak hour volumes from both data show significant differences especially for recreational areas. DHFs from the coverage survey are quite different from the values provided by the Korean design guide or previous research results and DHFs for urban areas are higher than recreational areas. However, DHFs from VDS shows similar values to previous research results. The result of this study suggests that using VDS for estimating DHFs is more reliable than using a coverage survey.

A Guideline for the Location of Bus Stop Type considering the Interval Distance of Bus Stops and Crosswalks at Mid-Block (Mid-Block상의 버스정류장과 횡단보도 이격거리를 고려한 버스정류장 배치형태 기준 연구)

  • Lee, Su-Beom;Gang, Tae-Uk;Gang, Dong-Su;Kim, Jang-Uk
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.2
    • /
    • pp.123-133
    • /
    • 2010
  • The national standards for the installation of pedestrian crosswalks prohibits installation of crosswalks within 200 meters of nearby overpasses, underpasses, or crosswalks. In case the exceptional installation is required, the feasibility study is to be thoroughly conducted by the local police agency. However, it is an undeniable fact that the specific installation standards for optimal types and locations of crosswalks are not yet to be established. This paper examines the development of traffic accident prediction model applicable to different types and locations of bus stops(type A and type B) at mid-block intersections. Furthermore, it develops the poisson regression model which sets the "number of traffic accidents" and "traffic accident severity" as dependent variables, while using "traffic volumes", "pedestrian traffic volumes" and "the distance between crosswalks and bus stops" as independent variables. According to the traffic accident prediction model applicable to the type A bus stop location, the traffic accident severity increases relative to the number of traffic volumes, the number of pedestrian traffic volumes, and the distance between crosswalks and bus stops. In case of the type B bus stop model, the further the bus stop is from crosswalks, the number of traffic accidents decreases while it increases when traffic volumes and pedestrian traffic volumes increase. Therefore, it is reasonable to state that the bus stop design which minimizes the traffic accidents is the type C design, which is the one in combination of type A and type B, and the optimal distance is found to be 65 meters. In case of the type A design and the type B design, the optimal distances are found to be within range 60~70meters.