• Title/Summary/Keyword: 역산모델링

Search Result 120, Processing Time 0.028 seconds

Safety Analysis of Reservoir Dikes in South Korea through the Interpretation of the Electrical Resistivity Data Considering Three-dimensional Structure (3차원 구조를 고려한 전기비저항 탐사자료 해석을 통한 국내 저수지 제체 안전성 분석)

  • Song, Sung-Ho;Yong, Hwan-Ho;Lee, Gyu-Sang;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.160-167
    • /
    • 2019
  • Resistivity inversion result may be distorted if the seepage line fluctuation within central core with the change of reservoir water level as well as the conductivity of the reservoir water is not taken into consideration because the reservoir dike is composed of three-dimensional (3D) resistivity structure. Consequently, to accurately analyze the resistivity changes inside the reservoir dike according to the change of reservoir water level, 3D electrical resistivity modeling for the 2D survey line considering topography and physical properties of dam components was carried out. In addition, 2D inversion was performed with the simulated 2D resistivity data for a given 3D model in order to compare it with the inversion result of real field data. For 283 reservoirs in Korea, 2D inversion results for the simulated 2D data and field 2D resistivity data were compared. Finally, the reservoirs with an inversion ratio of 50% or less were selected as reservoirs that require further precise investigation.

An Inversion Package for Interpretation of Microgravity Data (고정밀 중력탐사 자료 역산 패키지)

  • Park, Yeong-Sue;Rim, Hyoungrea;Lim, Mutaek;Chung, Hojoon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.4
    • /
    • pp.226-231
    • /
    • 2017
  • Since microgravity survey aims to delineate subsurface density structures in small scale, it requires inversion method, which is able to resolve small scale structures. It can be achieved by adopting a stabilizing functional which separates density boundary distinctly, which is different concept from general inversion routines. We composed Matlab-based interactive two-dimensional microgravity data inversion package containing several kinds of inversion routines with different stabilizing functional, for handling various geologic conditions and survey purposes. Different kinds of inversion routines in the package were verified and examined with representative synthetic data sets generated by numerical modeling. In addition, we applied the developed package to a real microgravity survey data.

A Fast Inversion Method for Interpreting Single-Hole Electromagnetic Data (단일 시추공 전자탐사 자료 해석을 위한 빠른 역산법)

  • Kim, Hee-Joon;Lee, Jung-Mo
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.316-322
    • /
    • 2002
  • A computationally efficient inversion scheme has been developed using the extended Born or localized nonlinear approximation to analyze electromagnetic fields obtained in a single-hole environment. The medium is assumed to be cylindrically symmetric about the borehole, and to maintain the symmetry vertical magnetic dipole source is used throughout. The efficiency and robustness of an inversion scheme is very much dependent on the proper use of Lagrange multiplier, which is often provided manually to achieve desired convergence. In this study, an automatic Lagrange multiplier selection scheme has been developed to enhance the utility of the inversion scheme in handling field data. The inversion scheme has been tested using synthetic data to show its stability and effectiveness.

Time-domain Seismic Waveform Inversion for Anisotropic media (이방성을 고려한 탄성매질에서의 시간영역 파형역산)

  • Lee, Ho-Yong;Min, Dong-Joo;Kwon, Byung-Doo;Yoo, Hai-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.51-56
    • /
    • 2008
  • The waveform inversion for isotropic media has ever been studied since the 1980s, but there has been few studies for anisotropic media. We present a seismic waveform inversion algorithm for 2-D heterogeneous transversely isotropic structures. A cell-based finite difference algorithm for anisotropic media in time domain is adopted. The steepest descent during the non-linear iterative inversion approach is obtained by backpropagating residual errors using a reverse time migration technique. For scaling the gradient of a misfit function, we use the pseudo Hessian matrix which is assumed to neglect the zero-lag auto-correlation terms of impulse responses in the approximate Hessian matrix of the Gauss-Newton method. We demonstrate the use of these waveform inversion algorithm by applying them to a two layer model and the anisotropic Marmousi model data. With numerical examples, we show that it's difficult to converge to the true model when we assumed that anisotropic media are isotropic. Therefore, it is expected that our waveform inversion algorithm for anisotropic media is adequate to interpret real seismic exploration data.

  • PDF

Inversion of Time-domain Induced Polarization Data by Inverse Mapping (역 사상법에 의한 시간영역 유도분극 자료의 역산)

  • Cho, In-Ky;Kim, Yeon-Jung
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.149-157
    • /
    • 2021
  • Given that induced polarization (IP) and direct current (DC) resistivity surveys are similar in terms of data acquisition, most DC resistivity systems are equipped with a time-domain IP data acquisition function. In addition, the time-domain IP data include the DC resistivity values. As such, IP and DC resistivity data are intimately linked, and the inversion of IP data is a two-step process based on DC resistivity inversions. Nevertheless, IP surveys are rarely applied, in contrast to DC resistivity surveys, as proper inversion software is unavailable. In this study, through numerical modeling and inversion experiments, we analyze the problems with the conventional inverse mapping technique used to invert time-domain IP data. Furthermore, we propose a modified inverse mapping technique that can effectively suppress inversion artifacts. The performance of the technique is confirmed through inversions applied to synthetic IP data.

Joint Diversion Analysis Using the Dispersion Characteristics of Love Wave and Rayleigh Wave (I) - Constitution of Joint Diversion Analysis Technique - (러브파와 레일리파의 분산특성을 이용한 동시역산해석(I) - 동시역산해석기법의 구성 -)

  • Lee Il-Wha;Joh Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.145-154
    • /
    • 2005
  • Love wave and Rayleigh wave are the major elastic waves belonging to the category of the surface wave. Those waves are used to determine the ground stiffness profile using their dispersion characteristics. The fact that Love wave is not contaminated by P-wave makes Love wave superior to Rayleigh wave and other body waves. Therefore, the information that Love wave carries is more distinct and clearer than that of others. Based on theoretical research, the joint inversion analysis that uses the dispersion information of both Love and Rayleigh wave was proposed. This analysis consists of the forward modeling using transfer matrix, the sensitivity matrix for evaluating the ground system and DLSS (Damped Least Square Solution) as an inversion technique. The technique of joint inversion uses the dispersion characteristics of Love wave and Rayleigh wave simultaneously making the sensitivity matrix. The sensitivity matrix was used for inversion analysis repeatedly to find the approximate ground stiffness profile. The purpose of the joint inversion analysis is to improve accuracy and convergency of inversion results by utilizing that frequency contribution of each wave is different.

Development of an Inversion Analysis Technique for Downhole Testing and Continuous Seismic CPT

  • Joh, Sung-Ho;Mok, Young-Jin
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.95-108
    • /
    • 1998
  • Downhole testing and seismic CPT (SCPT) have been widely used to evaluate stiffness profiles of the subgrade. Advantages of downhole testing and SCPT such as low cost, easy operation and a simple seismic source have got these testings more frequently adopted in site investigation. For the automated analysis of downhole testing and SCPT, the concept of interval measurements has been practiced. In this paper. a new inversion procedure to deal tilth the interval measurements for the automated downhole testing and SCPT (including a newlydeveloped continuous SCPT) is proposed. The forward modeling in the new inversion procedure incorporates ray path theory based on Snell's law. The formulation for the inversion analysis is derived from the maximum likelihood approach, which estimates the maximum likelihood of obtaining a particular travel time from a source to a receiver. Verification of the new inversion procedure was performed with numerical simulations of SCPT using synthesized profiles. The results of the inversion analyses performed for the synthetic data show that the new inversion analysis is a valid procedure which enhances Va profiles determined by downhole testing and SCPT.

  • PDF

Generalized Rapid Relaxation Inversion of Two-Dimensional Magnetotelluric Survey Data (GRRI를 이용한 2차원 MT 탐사자료의 역산)

  • Jeong, Yong-Hyun;Suh, Jung-Hee;Shin, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.71-78
    • /
    • 1998
  • Inversion schemes of 2-D MT survey data generally take enormous computational time and computer memory. In addition, careful attention must be paid in handling MT data, especially in cases of TM mode, inversion results can be seriously distorted because of static effect caused by current channeling across inhomogeneous surface boundaries. There-fore inversion algorithm using the GRRI scheme for TM mode MT data was implemented. This scheme is based on a perturbation analysis with a locally 2-D analysis and local inversions were sequently performed over each divided section without additional forward modelings. The algorithm was applied to several synthetic data for the purpose of verification of its efficiency and applicability. With less computer resources than conventional schemes, it could handle static effect directly by including current channeling across inhomogeneous boundaries. Thus it is expected to be used for an useful tool such as a real-time inversion scheme in the field.

  • PDF

Time-Domain Geoacoustic Inversion via Light Bulb Source Signal Matching (전구음원 신호를 이용한 시간영역 지음향학적 인자 역산)

  • Kim Kyungseop;Park Cheolsoo;Kim Seongil;Seong Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.334-342
    • /
    • 2005
  • In this Paper. a time-domain geoacoustic inversion was performed using the bulb signals measured during MがU. 04 experiment conducted in the East Sea of Korea in 2004. An obiective function was defined as a direct cross-correlation between the measured and the simulated signals in time domain. The ray theory was used to model the wave propagation in time domain and optimizations were Performed using VFSA (very fast simulated annealing) algorithm. Comparison of inversion results with those from transmission loss matching (an accompanying paper in this issue of the Journal of the Acoustical Society of Korea) shows that Parameters are consistently inverted. Direct time series comparisons between the measured signals and the simulated signals are Presented based on inversion results.

Development of Three-dimensional Inversion Algorithm of Complex Resistivity Method (복소 전기비저항 3차원 역산 알고리듬 개발)

  • Son, Jeong-Sul;Shin, Seungwook;Park, Sam-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.180-193
    • /
    • 2021
  • The complex resistivity method is an exploration technique that can obtain various characteristic information of underground media by measuring resistivity and phase in the frequency domain, and its utilization has recently increased. In this paper, a three-dimensional inversion algorithm for the CR data was developed to increase the utilization of this method. The Poisson equation, which can be applied when the electromagnetic coupling effect is ignored, was applied to the modeling, and the inversion algorithm was developed by modifying the existing algorithm by adopting comlex variables. In order to increase the stability of the inversion, a technique was introduced to automatically adjust the Lagrangian multiplier according to the ratio of the error vector and the model update vector. Furthermore, to compensate for the loss of data due to noisy phase data, a two-step inversion method that conducts inversion iterations using only resistivity data in the beginning and both of resistivity and phase data in the second half was developed. As a result of the experiment for the synthetic data, stable inversion results were obtained, and the validity to real data was also confirmed by applying the developed 3D inversion algorithm to the analysis of field data acquired near a hydrothermal mine.