• Title/Summary/Keyword: 엑스선

Search Result 356, Processing Time 0.031 seconds

진공 밀봉된 탄소나노튜브 기반 디지털 엑스선 튜브

  • Song, Yun-Ho;Kim, Jae-U;Jeong, Jin-U;Gang, Jun-Tae;Choe, Seong-Yeol;Choe, Jeong-Yong;An, Seung-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.253.2-253.2
    • /
    • 2013
  • 탄소나노튜브(CNT)는 나노미터의 직경과 마이크로미터의 길이를 갖는 기하학적 구조와 우수한 전계방출 특성으로 디지털 엑스선 소스와 같은 차세대 전자소스 소자에 활용되고 있다. 본 발표에서는 고밀착성의 CNT 에미터와 진공 브레이징 공정 개발을 기초로 설계, 제작된 CNT 기반 디지털 엑스선 튜브에 대해서 논의한다. 나노 필러를 함유한 페이스트를 제조하여 캐소드 기판에 대한 CNT 에미터의 밀착성을 향상시켰으며, 진공 브레이징을 고온에서 최적화함으로써 진공 밀봉된 엑스선 튜브내의 진공도를 안정적으로 확보하였다. 유방암 진단을 위한 디지털 단층합성 시스템용으로 50 mA 이상의 고전류 엑스선 튜브를 제작함과 아울러 근접 암치료 또는 강내형 엑스선 영상용으로 6 mm 이하의 직경을 갖는 초소형 엑스선 튜브를 제작하였다. 개발된 CNT 기반 엑스선 튜브는 우수한 안정성과 신뢰성을 보이며, 에너지와 강도를 쉽게 제어할 수 있는 디지털 특성도 잘 나타냈다.

  • PDF

Image Quality Improvement through Energy Spectrum Change for X-ray (엑스선 에너지스펙트럼 변경을 통한 영상 화질 향상에 관한 연구)

  • Kim, Gu;Kim, Neung Gyun;Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.71-78
    • /
    • 2021
  • When continuous X-ray are used when acquiring and X-ray image, even the same material may not be accurately represented in the image according to the thickness due to various X-ray energies. To solve this problem, the X-ray energy spectrum was changed to improve the image quality. Using SPEKTR v3.0, an X-ray energy spectrum with an additional filter added and a general X-ray energy spectrum using only a unique filter were obtained. Simulation was performed using the obtained X-ray energy spectrum as a radiation source for Geant4 Application for Tomographic Emission (GATE). Using GATE data, an X-ray image with an additional filter and an image reconstructed from and X-ray image without an additional filter were compared and analyzed through a mono energy image of 74 keV. In the case of using the X-ray energy spectrum without using an additional filter, the amount of X-rays transmitted according to the thickness of the same material is different from the amount that decreases according to the thickness of the material. Similar results were obtained as the amount decreased with the material thickness. In other words, a similar result was obtained when the reduced dose was used with a mono energy. When an X-ray image is obtained by changing an X-ray energy spectrum using an additional filter, a more accurate result of transmission of X-rays may be obtained. In radiological examination, it was confirmed that the appropriate use of the additional filter has a great effect on improving the image quality.

Three-dimensional Reconstruction of X-ray Imagery Using Photogrammetric Technique (사진측량기법을 이용한 엑스선영상의 3차원 모형화)

  • Kim, Eui Myoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.277-285
    • /
    • 2008
  • X-ray images are wildly used in medical applications, and these can be more efficiently find scoliosis which is appearing during the growth of human skeleton than others. This research is focused on the calibration of X-ray image and three-dimensional coordinate determination of objects. Three-dimensional coordinate of objects taken by X-ray are determined by two step procedure. Firstly, interior and exterior orientation parameters are determined by camera calibration using Primary Calibration Object (PCO) which has two sides with embedded radiopaque steel ball. Secondly, calibration cage coordinates which is composed of two acrylic sheets that are perpendicular to X-ray source are determined by the parameters. Three-dimensional coordinates of calibration cage determined by photogrammetric technique are compared with that of Coordinate Measuring Machine (CMM). Though the accuracy analysis, X direction which is parallel to X-ray source error values are relatively higher than those of Y and Z directions. But, the accuracies of Y and Z axis are approximately -3 mm to 3 mm. From the research results, it is considered that photogrammetric technique is applied to determine three-dimensional coordinates of patients or assist to make medical devices.

Radiation Damage of Semiconductor Device by X-ray (엑스선에 의한 반도체 소자의 방사선 손상)

  • Kim, D.S.;Hong, H.S.;Park, H.M.;Kim, J.H.;Joo, K.S.
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.110-117
    • /
    • 2015
  • Recently, Due to the increased industry using radiation inspection equipment in the semiconductor, this demand of technology research is increasing. Although semiconductor inspection equipment is using low energy X-ray from 40 keV to 120 keV, Studies of radiation damage about the low energy X-ray are lacking circumstance in our country. Therefore, It is study that BJT (bipolar junction transistor) of one type of semiconductor elements are received radiation damage by low energy X-ray. BJT were used to the NXP semiconductor company's BC817-25 (NPN type), and Used the X-ray generator for the irradiation. Radiation damage of BJT was evaluated that confirm to analyse change of collector-emitter voltage of before and after X-ray irradiation when current gain fixed to 10. X-ray generator of tube voltage was setting 40 kVp, 60 kVp, 80 kVp, 100 kVp, 120 kVp and irradiation time was setting 180s, 360s, 540s into 180s intervals. As the result, We confirmed radiation damage in BJT by low energy X-ray under 120 keV energy, and Especially the biggest radiation damage was appeared at the 80 kVp. It is expected that ELDRS (enhanced low dose rate sensitivity) phenomenon occurs on the basis of 80 kVp. This studies expect to contribute effective dose administration of semiconductor inspection equipment using low energy X-ray, Also Research and Development of X-ray filter.

Acquisition of Monochromatic X-ray Using Multilayer Mirror (다층박막 거울을 이용한 단색 엑스선 획득)

  • Chon, Kwon-Su
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.179-184
    • /
    • 2010
  • A hard X-ray microscope system for obtaining images of nano-spatial resolution has been widely studied and requires monochromatic X-ray. A multilayer mirror of 84% reflectivity was designed to acquire tungsten characteristic X-ray of 8.4 keV from the white beam generated from an X-ray tube, and the C/W multilayer mirror of $50{\times}50\;mm$ size and 5.65 nm d-spacing was fabricated by the ion-beam sputtering system. The C/W multilayer had a uniformity of 99.5%, and the structure of the multilayer mirror was verified by a TEM image. The obtainable x-ray reflectivity for the C/W multilayer mirror at 8.4 keV was estimated from measuring the X-ray reflectivity using the copper characteristic X-ray of 8.05 keV. Monochromatic X-ray of 8.4 keV was generated by combining a X-ray tube, and the reflectivity and monochromaticity were 77.1% and 0.21 keV, respectively. Monochromatic X-ray generated from the combination of an X-ray tube and an C/W multilayer mirror has enough potential to use X-ray source for hard X-ray microscope system of laboratory size. If the C/W multilayer mirror of d-spacing of a few nanometers can be fabricated, monochromatic X-ray corresponded to 17.5 keV, molybdenum characteristic X-ray, can be obtained and applied to mammography in the medical application.

Acquisition of Monochromatic X-ray using Graded Multilayer Mirror (Graded 다층박막거울을 이용한 단색 엑스선 획득)

  • Ryu, Cheolwoo;Choi, Byoungjung;Son, Hyunhwa;Kwon, Youngman;Kim, Byoungwook;Kim, Youngju;Chon, Kwonsu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.205-211
    • /
    • 2015
  • At a recent medical imaging technology, the major issue of X-ray diagnosis in breast cancer is the early detection of breast cancer and low patient's exposure dose. As one of studies to acquire a monochromatic X-ray, Technologies using multilayer mirror had been preceded. However, a uniform multilayer mirror that consists of uniform thin-film thickness can acquire a monochromatic X-ray only in the partial area corresponds to angle of incidence of white X-ray, so there are limits for X-ray imaging technology applications. In this study, we designed laterally graded multilayer mirror(below GML) that reflects same monochromatic X-ray over the entire area of thin-film mirror, which have the the thickness of the linear gradient that correspond to angle of incidence of white X-ray. By using ion-beam sputtering system added the mask control system we fabricated a GML which has size of $100{\times}100mm^2$. The GML is designed to achieve the monochromatic X-ray of 17.5kev energy and has thin-film thickness change from 4.62nm to 6.57nm(3.87nm at center). It reflects the monochromatic X-ray with reflectivity of more than 60 percent, FWHM of below 2.6keV and X-ray beam width of about 3mm. The monochromatic X-ray corresponded to 17.5keV using GML would have wide application in development of mammography system with high contrast and low dose.

Diagnostic X-ray Spectra Detection by Monte Carlo Simulation (진단용 X-선 스펙트럼의 몬테칼로 전산모사 측정)

  • Baek, Cheol-Ha;Lee, Seung-Jae;Kim, Daehong
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.289-295
    • /
    • 2018
  • Most diagnostic devices in the medical field use X-ray sources, which emit energy spectra. In radiological diagnosis, the quantitative and qualitative analyses of X-rays are essential for maintaining the image quality and minimizing the radiation dose to patients. This work aims to obtain the X-ray energy spectra used in diagnostic imaging by Monte Carlo simulation. Various X-ray spectra are simulated using a Monte Carlo simulation tool. These spectra are then compared to the reference data obtained with a tungsten anode spectral model using the interpolating polynomial (TASMIP) code. The X-ray tube voltages used are 50, 60, 80, 100, and 110 kV, respectively. CdTe and a-Se detector are used as the detectors for obtaining the X-ray spectra. Simulation results demonstrate that the various X-ray spectra are well matched with the reference data. Based on the simulation results, an appropriate X-ray spectrum, in accordance with the tube voltage, can be selected when generating an image for diagnostic imaging. The dose to be delivered to the patient can be predicted prior to examination in the diagnostic field.

Development of Multi-channel Detector of X-ray Backscatter Imaging (후방산란 엑스선 영상획득을 위한 다채널 검출기 개발)

  • Lee, Jeonghee;Park, Jongwon;Choi, Yungchul;Lim, Chang Hwy;Lee, Sangheon;Park, Jaeheung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.245-247
    • /
    • 2022
  • Backscattered x-ray imaging is a technology capable of acquiring an image inside an irradiated object by measuring X-rays scattered from an object. For image acquisition, the system must include an X-ray generator and a detection system for measuring scattered x-rays. The imaging device must acquire a real-time signal at sampling intervals for x-rays generated by passing through a high-speed rotating collimator, and for this purpose, a high-speed signal acquisition device is required. We developed a high-speed multi-channel signal acquisition device for converting and transmitting signals generated by the sensor unit composed of a large-area plastic scintillator and a photomultiplier tube. The developed detector is a system capable of acquiring signals at intervals of at least 15u seconds and converting and transmitting signals of up to 6 channels. And a system includes remote control functions such as high voltage, signal gain, and low level discrimination for individual calibration of each sensor. Currently, we are conducting an application test for image acquisition under various conditions.

  • PDF

Calculation of Shielding Rate of Radiation Protective Equipment Using the X-ray Spectrum of IPEM Report-78 (IPEM Report-78의 엑스선 스펙트럼을 이용한 방사선 방호장비의 차폐율 계산)

  • Han, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.755-760
    • /
    • 2021
  • In this study, the shielding rate of major X-ray protective equipment used in the medical environment was calculated using X-ray spectrum data emitted from the diagnostic X-ray generator of The Institute of Physics and Engineering(IPEM) Report-78, and the applicability of radiation protection was investigated. Radiation shielding rates were calculated through reduction rates of air-kerma and total intensity for lead apron (0.3 mmPb), thyroid shield (0.5 mmPb), lead goggles (0.5 mmPb), and lead glass (1.8, 2.7, 3.3 mmPb) used for diagnostic X-ray protection. As a result, the shielding rate calculated as the air kerma reduction rate ranged from 96.31 to 100% at 80 kV, and 90.35 to 100% at 120 kV. In addition, the results of this calculation were well matched with the results of previous studies measuring the actual shielding rate, and it is expected that the X-ray spectrum data of IPEM Report-78 can be used for radiation protection.

X-Ray Resonant Magnetic Scattering Study of Magnetic Structures and Magnetic Switching Mechanism in Magnetic Multilayers and Nanostructures (엑스선 공명 자기 산란을 이용한 자성 다층박막 및 나노 구조체의 자기 구조와 자기 스위칭 메커니즘의 연구)

  • Lee, Dong-Ryeol
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.4
    • /
    • pp.160-166
    • /
    • 2010
  • X-ray resonant magnetic scattering (XRMS) allows us to extract magnetic depth profiles in magnetic multilayers and magnetization distribution in magnetic nanostructures in element-specific manner using x-ray reflectivity and diffraction. XRMS is explained with a brief introduction and examples of magnetic structures and magnetic switching mechanism in magnetic multilayers and nanostructures.