• Title/Summary/Keyword: 에폭시 수지

Search Result 618, Processing Time 0.033 seconds

Enhancement of the Cell Performance for an Carbon Anode in Li-ion Battery (수지 코팅에 의한 리튬이온전지용 탄소 부극재료의 전지 성능 개선)

  • 김정식;윤휘영;유광수
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.8
    • /
    • pp.755-760
    • /
    • 2001
  • 본 연구에서는 카본전극의 표면개질에 따른 리튬이온 전지의 전지특성 변화에 대해서 연구하였다. 즉, mesocarbon microbeads(MCMB) 카본에 에폭시 수지(resin)를 코팅시킴으로서 카본전극 표면에 개질시켰으며, 이에 따른 전극의 전기화학적 특성을 고찰하였다. 에폭시 수지에 의한 카본의 표면코팅은 30%의 H$_2$SO$_4$용액에서 2시간 동안 refluxing한 MCMB를 에폭시 수지를 용해시킨 THF(tetrahydrofuran) 용액에 넣어 혼합함으로써 MCMB 표면에 에폭시 수지가 코팅되도록 하였다. 이렇게 에폭시 수지가 코팅된 MCMB를 약 1000-130$0^{\circ}C$로 열처리하여 고분해능 투과전자현미경으로 관찰한 결과, 코팅층은 비정질 카본 구조를 갖게됨을 알 수 있었다. 또한, 에폭시 수지에 의하여 코팅된 MCMB는 코팅되지 않은 MCMB보다 더 높은 BET 비표면적을 나타내었다. Li/MCMB 전지 cell을 만들어 충방전시험을 수행한 결과, 에폭시 수지에 의하여 코팅된 MCMB로 만든 전극이 더 우수한 충방전 용량과 싸이클 특성을 나타내었다. 에폭시 수지 코팅으로 전극 표면을 개질시킴으로서 전지특성이 개선된 원인에 관하여 에폭시 코팅의 결정구조와 전극계면에서의 부동태 피막(passivation film) 형성과 연계하여 논의하였다.

  • PDF

Enhancing Fracture Toughness of Epoxy Resins with CTBN-PES Block Copolymer (CTBN-PES Block Copolymer에 의한 에폭시 수지의 강인화 연구)

  • 김형륜;육종일;윤태호
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.172-176
    • /
    • 1999
  • 에폭시 수지의 강인성 향상을 위하여 양말단에 아민 반응기를 가지는 PES-CTBN-PES triblock copolymer를 합성하여 이를 에폭시 수지의 강인화제로 사용하였으며 경화제로는 p-DDS(p-dichlorodiphenylsulfone)를 사용하였다. 또한 공중합체에 의한 물성 향상효과를 CTBN과 PES-NH$_2$의 블렌드에 의한 경우와 비교하였다. 강인화된 에폭시 수지의 물성은 강인성 및 굴곡특성을 측정하여 분석하였으며, 열특성은 DSC, TGA, 및 DMA에 의해 실시되었다. 그리고 강인화된 에폭시 수지의 강인성 향상 mechanism을 규명하기 위하여 파단면을 SEM으로 분석하여 상분리 거동을 고찰하였다. 높은 유리전이온도와 우수한 기계적 물성을 가지는 고성능 기능성 폴리설폰(PES-NH$_2$)과 상용 액상 고무 첨가제인 CTBN을 이용하여 합성된 공중합체를 강인화제로 사용함으로써 열안정성, 탄성률 및 내식성의 감소없이 에폭시 수지의 쳐대 단점인 강인성을 최적 수준으로 개선시킬 수 있었으며 공중합체의 에폭시 수지에 대한 우수한 용해도에 따른 가공성이 향상되었다.

  • PDF

Cure Monitoring of Epoxy Resin by Using Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 에폭시 수지의 경화도 모니터링)

  • Lee, Jin-Hyuk;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.211-216
    • /
    • 2016
  • In several industrial fields, epoxy resin is widely used as an adhesive for co-curing and manufacturing various structures. Controlling the manufacturing process is required for ensuring robust bonding performance and the stability of the structures. A fiber optic sensor is suitable for the cure monitoring of epoxy resin owing to the thready shape of the sensor. In this paper, a fiber Bragg grating (FBG) sensor was applied for the cure monitoring of epoxy resin. Based on the experimental results, it was demonstrated that the FBG sensor can monitor the status of epoxy resin curing by measuring the strain caused by volume shrinkage and considering the compensation of temperature. In addition, two types of epoxy resin were used for the cure-monitoring; moreover, when compared to each other, it was found that the two types of epoxy had different cure-processes in terms of the change of strain during the curing. Therefore, the study proved that the FBG sensor is very profitable for the cure-monitoring of epoxy resin.

Experimental Study of Removing Epoxy Resin from Iron Object using Nd:YAG Laser Cleaning System (철제유물에 사용된 에폭시수지 제거를 위한 Nd:YAG 레이저 클리닝 실험 연구)

  • Lee, Hye-Youn;Cho, Nam-Chul;Lee, Jong-Myoung;Yu, Jae-Eun
    • Journal of Conservation Science
    • /
    • v.27 no.3
    • /
    • pp.301-312
    • /
    • 2011
  • Epoxy resin has superior durability and adhesive strength and proper physical strength so that it is used to diversity materials for multi-purposes. However epoxy resin is hardly removed after hardening specially once it is applied to artefacts, it is difficult to remove them under re-conservation. This paper is an experimental study on removing epoxy resin applied to iron objects using Nd:YAG laser cleaning system. Tests conducted in this study investigated how increasing laser energy and pulses would give effect on samples. The samples were prepared in a way that epoxy resin, itself pure and one which was mixed with pigment and they were applied to iron coupons and corroded iron coupons respectively. As a result of experiment, pure epoxy resin applied to corroded iron coupons was ablated at high laser energy but epoxy resin applied to iron coupons and mixing with pigment were not ablated but discolored and bubbled due to laser-induced heat generation. Results of FT-IR showed no component alteration of shifted resins and no residues on the surfaces ablated by laser irradiation. From SEM-EDS for removed surfaces, the debris from epoxy resin and melting iron was observed. Therefore, this study demonstrated the possibilities and limitations for laser cleaning to remove epoxy resin from iron objects.

Effect of Talc Content on the Physical Properties of the Epoxy Resins in Conservation Treatment of Stone Monument (석조문화재 보존처리용 에폭시수지 물성에 미치는 탈크 함량의 영향)

  • Kim, Da-Ram;Do, Jin-Young
    • Journal of Conservation Science
    • /
    • v.25 no.1
    • /
    • pp.77-86
    • /
    • 2009
  • The physical properties of the epoxy resins were studied with an addition of filler content and the application of artificial weathering test. When talc as a filler was added to the epoxy resin (L-30), the water resistance seemed to be increased because of the results of the reducing of water absorption rate and the increasing of contact angle. Although the adhesive strength of epoxy resins was not affected by the increasing amount of talc, its compressive strength was reduced. The physical properties of the epoxy resins had different trends according to the site environments. The artificial weathering test with the change of temperature and humidity showed that the changes of water absorption rate and colour differences of the epoxy resins containing talc were lower than the pure epoxy resin itself. However, the contact angle was higher. The artificial weathering test with ultraviolet irradiations showed the opposite result; the damage of epoxy resins was increased with the increasing of talc content. These mean the site environment of the stone monuments should be considered to determine the content of talc added to increase the durability of epoxy resin.

  • PDF

Recent Trend for Performance Improvement of Epoxy Resin (에폭시 수지의 물성 향상을 위한 최근 동향)

  • Jang, Jyong-Sik
    • Applied Chemistry for Engineering
    • /
    • v.2 no.4
    • /
    • pp.301-310
    • /
    • 1991
  • Epoxy resins have been widely used for many applications along with good processibility. However, epoxy resin systems have poor hot/wet performance properties and brittleness after resin curing and have limited to apply for environmental resistant materials. In order to improve the toughness of epoxy resin, this review article deals with incorporation method of rubber and high performance thermoplastics into the matrix resin. In addition, molecular design of epoxy resin and modification of thermoplastic have been introduced for improving hot/wet properties of epoxy resin.

  • PDF

A Study on the High Performance Waterborne Epoxy Resin for Surface Coating (표면 코팅을 위한 고성능 수용성 에폭시 수지에 관한 연구)

  • Kim, Yong-Ho;Lee, Kwang-Won;Kim, Young-Jae
    • Elastomers and Composites
    • /
    • v.35 no.2
    • /
    • pp.89-97
    • /
    • 2000
  • Waterborne epoxy resins have been developed in order to meet environmental regulations for reduction of the emission of organic solvents from coating industry As each generation has filled a performance gap in the previous technology, new waterborne epoxy resin has developed. Initially, waterborne epoxy resins were used primarily on masonry, but the subsequent generations have found utility for the protection of metallic substrates as well. Indeed, the third generation systems have been formulated to produce the high performance industrial maintenance primers which possess the desirable combination of good corrosion resistance and low volatile organic compound levels. This paper outlines the important guidelines for formulating waterborne epoxy primers from waterborne epoxy resin that has recently developed in our company. The importance of using the appropriate resin-curing agent system at the optimized epoxy to amine ratio is stressed.

  • PDF

Studies on Rheological and Mechanical Properties of Siloxane-modified Epoxy (실록산 변성 에폭시의 유변학적.물리적 특성 연구)

  • 박수진;김현철;이재덕;박병기
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.368-369
    • /
    • 2003
  • 선진 복합재료의 매트릭스 수지로서 자장 많이 사용되고 있는 에폭시는 수지 및 경화제의 종류에 따라 여러 가지 물성을 나타낼 수 있다. 에폭시 수지는 기계적 물성 및 내화학성이 우수하고 경화시 수축변형이 적은 장점이 있으나 높은 가친밀도 때문에 순간적인 충격에 취약하다는 단점을 지니고 있다. 따라서 이러한 에폭시 수지의 취성 (brittleness)을 개선하기 위해 충격강도를 증가시킬 수 있는 강인화제를 혼합하여 경화시키는 방법이 사용되고 있다[1]. (중략)

  • PDF

Synthesis and performance assessment of modified epoxy resins containing fatty acid (지방산 변성 에폭시수지 합성과 성능평가)

  • Lee, Dong-Chan;Kim, Jin-Wook;Choi, Joong-So
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.634-646
    • /
    • 2016
  • In this work, modified epoxy resins which were well melted in mild solvent were synthesized and solubility assessment was carried out for synthesized epoxy resins. Bisphenol-A type, phenol novolac type and ortho-cresol novolac type epoxy resins were used and fatty acid, dodecyl phenol (DP) and toluene diisocyanate (TDI) were added for synthesis of modified epoxy resins containing fatty acid (MEFA). Composition was epoxy resin/fatty acid = 1.0/0.5 and fatty acid/DP = 0.25/0.25 by equivalent weight and twelve MEFAs were synthesized according to epoxy resins. Viscosity and solubility were measured for twelve MEFAs. As a result, solubility of MEFA was excellent for mild solvent according to increasement of contents of benzene ring, glycidyl group and carbon number of alkyl group. And physical properties were measured for each coating of paints after preparing transparent paints of MEFA to melt well in mild solvent among twelve MEFAs. As a result, they showed an optimal performance on conditions of equivalent ratio of bisphenol-A type epoxy resin/fatty acid/DP/TDI; 1.0/0.25/0.25/0.5 and equivalent ratio of phenol novolac type epoxy resin/fatty acid/DP; 1.0/0.25/0.25 for drying time, adhesion, hardness, impact resistance and alkali resistance.

The Moisture Absorption Properties of Liquid Type Epoxy Molding Compound for Chip Scale Package According to the Change of Fillers (충전재 변화에 따른 Chip Scale Package(CSP)용 액상 에폭시 수지 성형물 (Epoxy Molding Compound)의 흡습특성)

  • Kim, Whan-Gun
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.594-602
    • /
    • 2010
  • Since the requirement of the high density integration and thin package technique of semiconductor have been increasing, the main package type of semiconductor will be a chip scale package (CSP). The changes of diffusion coefficient and moisture content ratio of epoxy resin systems according to the change of liquid type epoxy resin and fillers for CSP applications were investigated. The epoxy resins used in this study are RE-304S, RE310S, and HP-4032D, and Kayahard MCD as hardener and 2-methylimidazole as catalyst were used in these epoxy resin systems. The micro-sized and nano-sized spherical type fused silica as filler were used in order to study the moisture absorption properties of these epoxy molding compound (EMC) according to the change of filler size. The temperature of glass transition (Tg) of these EMC was measured using Dynamic Scanning Calorimeter (DSC), and the moisture absorption properties of these EMC according to the change of time were observed at $85^{\circ}C$ and 85% relative humidity condition using a thermo-hygrostat. The diffusion coefficients in these EMC were calculated in terms of modified Crank equation based on Ficks' law. An increase of diffusion coefficient and maximum moisture absorption ratio with Tg in these systems without filler can be observed, which are attributed to the increase of free volume with Tg. In the EMC with filler, the changes of Tg and maximum moisture absorption ratio with the filler content can be hardly observed, however, the diffusion coefficients of these systems with filler content show the outstanding changes according to the filler size. The diffusion via free volume is dominant in the EMC with micro-sized filler; however, the diffusion with the interaction of absorption according the increase of the filler surface area is dominant in the EMC with nano-sized filler.