• Title/Summary/Keyword: 에어러솔

Search Result 69, Processing Time 0.02 seconds

Comparison of light-absorption properties of aerosols observed in East and South Asia (동아시아와 남아시아지역에서 관측된 에어러솔의 광흡수 특성 비교)

  • Lee, Hae-Jung;Kim, Sang-Woo;Yoon, Soon-Chang;Lee, Sihye;Kim, Ji-Hyoung
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.301-309
    • /
    • 2011
  • In this study, we compared light-absorption properties of aerosols observed in East and South Asia from black carbon (BC) mass concentration, aerosol scattering (${\sigma}_s$) and absorption (${\sigma}_a$) coefficients measurements at four sites: Korea Climate Observatory-Gosan (KCO-G), Korea Climate Observatory-Anmyeon (KCO-A), Maldives Climate Observatory-Hanimaadhoo (MCO-H) and Nepal Climate Observatory-Pyramid (NCO-P). No significant seasonal variations of BC mass concentration, ${\sigma}_s$ and ${\sigma}_a$, despite of wet removal of aerosols by precipitation in summer, were observed in East Asia, whereas dramatic changes of light-absorbing aerosol properties were observed in South Asia between dry and wet monsoon periods. Although BC mass concentration in East Asia is generally higher than that observed in South Asia, BC mass concentration at MCO-H during winter dry monsoon is similar to that of East Asia. The observed solar absorption efficiency (${\alpha}$) at 550 nm, where ${\alpha}={\sigma}_a/({\sigma}_s+{\sigma}_a)$, at KCO-G and KCO-A is higher than that in MCO-H due to large portions of BC emission from fossil fuel combustion. Interestingly, ${\alpha}$ at NCO-P is 0.14, which is two times great than that in MCO-H and is about 40% higher than that in East Asia, though BC mass concentration at NCO-P is the lowest among four sites. Consistently, the highest elemental carbon to sulphate ratio is found at NCO-P.

Aerosol Size Distributions and Optical Properties during Severe Asian Dust Episodes Measured over South Korea in Spring of 2009-2010 (2009-2010년 봄철 심한 황사 사례에 대한 에어러솔 크기 분포와 광학적 특성)

  • Kang, Dong-Hun;Kim, Jiyoung;Kim, Kyung-Eak;Lim, Byung-Sook
    • Atmosphere
    • /
    • v.22 no.3
    • /
    • pp.367-379
    • /
    • 2012
  • Measurements of $PM_{10}$ mass concentration, aerosol light scattering and absorption coefficients as well as aerosol size distribution were made to characterize the aerosol physical and optical properties at the two Korean WMO/GAW regional stations, Anmyeondo and Gosan. Episodic cases of the severe Asian dust events occurred in spring of 2009-2010 were studied. Results in this study show that the aerosol size distributions and optical properties at both stations are closely associated with the dust source regions and the transport routes. According to the comparison of the $PM_{10}$ mass concentration at both stations, the aerosol concentrations at Anmyeondo are not always higher than those at Gosan although the distance from the dust source region to Anmyeondo is closer than that of Gosan. The result shows that the aerosol concentrations depend on the transport routes of the dust-containing airmass. The range of mass scattering efficiencies at Anmyeon and Gosan was 0.50~1.45 and $0.62{\sim}1.51m^2g^{-1}$, respectively. The mass scattering efficiencies are comparable to those of the previous studies by Clarke et al. (2004) and Lee (2009). It is noted that anthropogenic fine particles scatter more effectively the sunlight than coarse dust particles. Finally, we found that the aerosol size distribution and optical properties at Anmyeondo and Gosan show somewhat different properties although the samples for the same dust_episodic events are compared.

Nephelometer Measurement of Aerosol Scattering Coefficients at Seoul (네펠로미터로 관측한 서울의 에어러솔 산란계수 특성)

  • Shim, Sungbo;Yoon, Young Jun;Yum, Seong Soo;Cha, Joo Wan;Kim, Jong Hwan;Kim, Jhoon;Lee, Bang-Yong
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.459-474
    • /
    • 2008
  • Aerosol scattering coefficients for three different wavelengths ($\lambda$=450,550,700 nm) are measured almost continuously by a nephelometer in Seoul for a period of 13 months (February 2007-February 2008), which includes two weeks break in August 2007 for measurements at Daegwallyeong and YoungJongdo. The mean of the daily average scattering coefficients at $\lambda$=550 nm is $194.1{\pm}144.2Mm^{-1}$ and the minimum and maximum are $14.3Mm^{-1}$ and $998.1Mm^{-1}$, respectively. The scattering coefficient shows a general increasing trend with atmospheric relative humidity (RH). When the data are classified according to weather conditions, the days with no major weather events show the smallest scattering coefficient and also the lowest RH. Surprisingly haze/fog days show the largest scattering coefficient and Asian dust days comes in second. Although the variation is large within a season, winter shows the largest and autumn shows the smallest scattering coefficient. The average ${\AA}ngstr{\ddot{o}}m$ exponent is $1.40{\pm}0.32$ for the entire Seoul measurement. As expected, Asian dust days show the smallest ${\AA}ngstr{\ddot{o}}m$ exponent and haze/fog days are the next, suggesting more efficient hygroscopic growth of aerosols for this weather condition. Aerosol scattering coefficient seems to show better correspondence with CCN concentration rather than total aerosol concentration, which may indicate that CCN active aerosols are also good scattering aerosols.

Chemical Characteristics of Fine Aerosols During ABC-EAREX2005 (ABC-EAREX2005 미세 에어러솔의 화학적 특성)

  • Song, M.;Lee, M.;Moon, K.J.;Han, J.S.;Kim, K.R.;Lee, G.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.604-613
    • /
    • 2006
  • The chemical composition of $PM_{2.5}$ such as ${SO_4}^{2-},\;{NO_3}^-,\;Cl^-,\;{NH_4}^+,\;Ca^{2+},\;K^+,\;Na^+,\;Mg^{2+}$, OC, and EC and the concentrations of reactive trace gases including $O_3,\;CO,\;NOx,\;SO_2,\;and\;H_2O_2$ were measured at Gosan in Jeju Island during March $13{\sim}30$, as a part of the Atmospheric Brown Clouds-East Asian Regional Experiment 2005(ABC-EAREX2005). The average mass concentrations of $PM_{2.5}$ was 27.3 ${\mu}g/m^3$, of which OC showed the highest concentration as 4.22 ${\mu}g/m^3$ and nss ${SO_4}^{2-}$ was the second highest as 3.34 ${\mu}g/m^3$. During that period, average concentrations of CO and $O_3$ was about 300 ppbv and 56 ppbv, respectively. For the whole experiment, the correlations of CO with ${SO_4}^{2-}$ and EC were very good, which suggests that CO can be used as tracer for the formation of fine aerosols. Several pollution and dust episodes were identified by the enhancement of CO, OC, EC, nss ${SO_4}^{2-},\;or\;Ca^{2+}$ concentrations or their ratios. In conjunction with factor analysis, air trajectory analysis, and comparison with emission inventories, these results indicate the spring aerosols collected at Gosan was strongly influenced by Asian outflows.

A case study of aerosol features of Asian dust, fog, clear sky, and cloud at Anmyeon Island in April 2006 (2006년 4월 안면도에서 발생한 황사, 안개, 청명, 구름 사례에 대한 에어러솔 특성 분석)

  • Goo, Tae-Young;Hong, Gi-Man;Kim, Sang-Beak;Gong, Jong-Ung;Kim, Myoung-Soo
    • Atmosphere
    • /
    • v.18 no.2
    • /
    • pp.97-109
    • /
    • 2008
  • The aerosol characteristics in terms of 4 different cases (Asian dust, fog, clear sky and cloud) which had happened at Anmyeon Island in April 2006 were studied using various measurements such as the Micro Pulse Lidar (MPL), sunphotometer, $\beta$-ray $PM_{10}$ Analyzer, anemoscope and anemometer. In addition, synoptic charts, back trajectory analyses and satellite images were also used to help characterize the aerosol events. The aerosol optical properties were featured by the Aerosol Optical Depth (AOD) and ${\AA}ngstr\ddot{o}m$ exponent which were estimated by the sunphotometer. When Anmyeon Island was dominated by the Asian dust, the AOD was sharply increased as seven times as a yearly average of it (0.35). As compared with a yearly average of the ${\AA}ngstr\ddot{o}m$ exponent of 0.97, the ${\AA}ngstr\ddot{o}m$ exponent of a dust day was significantly low (0.099). In addition, $PM_{10}$ mass concentration showed an extremely high record. The maximum concentration reached $1790.5{\mu}gm^{-3}$ on 8 April 2006. The maximum mass concentration was shown with delay when the wind speed of $0ms^{-1}$ was observed. It was also found that a satellite image of the MODIS-RGB had a good agreement with the results of those measurements. It was shown that the MPL was able to describe effectively the vertical distribution of aerosol for all the cases. In particular, the MPL evidently captured the aerosol layer before the cloud observation. The aerosol layer was similarly described by the AOD. On a clear sky day, the AOD had not only a very low value (0.054) but also a feature of homogeneity.

Characteristics of Atmospheric Aerosol Optical Thickness over the Northeast Asia Using TERRA/MODIS Data during the Year 2000~2005 (동북아시아 지역에서 TERRA/MODIS 위성자료를 이용한 2000~2005년 동안의 대기 에어러솔 광학두께 변화 특성)

  • Lee, Dong Ha;Lee, Kwon Ho;Kim, Jeong Eun;Kim, Young Joon
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.85-96
    • /
    • 2006
  • The six-year (2000~2005) record of aerosol optical thickness (AOT or $\tau$) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) was analyzed over the Northeast Asia. The MODIS AOT standard products (MOD04_L2) over both ocean and land were collected to evaluate the spatial and temporal variability of the atmospheric aerosols over the study region ($32^{\circ}N{\sim}42^{\circ}N$ and $115^{\circ}E{\sim}133^{\circ}E$). The monthly averaged AOT result revealed slight changes(${\pm}0.002{\tau}/month$), which was almost unchangeable, over Korea. In contrast, the large AOT values (> 0.6) and a significant AOT increase (> 0.004 ${\tau}/month$) over East China were observed. For the analysis of spatio-temporal variability of AOT values, study area was divided by six sectors (I: North-East China, II: East China, III: Yellow Sea, IV: Korea Peninsular, V: East Sea, and VI: South Sea and Western part of Japan). The considerable result showed that particularly high AOT contribution was observed over sector I (32.5%) and II (25.5%) where some major urban and industrialized areas and agricultural fields are located and other cases were observed 13.2%, 14.6%, 7.1%, 7.0% over sector III, IV, V, and VI, respectively. In addition, yearly AOT changes based on seasons are observed differently at each sector but increasing trends reveal in summer and fall over all sectors.

Sensitivity Analysis of Volcanic Ash Inherent Optical Properties to the Remote Sensed Radiation (화산재입자의 고유 광학특성이 원격탐사 복사량에 미치는 민감도 분석)

  • Lee, Kwon-Ho;Jang, Eun-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.47-59
    • /
    • 2014
  • Volcanic ash (VA) can be estimated by remote sensing sensors through their spectral signatures determined by the inherent optical property (IOP) including complex refractive index and the scattering properties. Until now, a very limited range of VA refractive indices has been reported and the VA from each volcanic eruption has a different composition. To improve the robustness of VA remote sensing, there is a need to understanding of VA - radiation interactions. In this study, we calculated extinction coefficient, scattering phase function, asymmetry factor, and single scattering albedo which show different values between andesite and pumice. Then, IOPs were used to analyze the relationship between theoretical remote sensed radiation calculated by radiative transfer model under various aerosol optical thickness (${\tau}$) and sun-sensor geometries and characteristics of VA. It was found that the mean rate of change of radiance at top of atmosphere versus ${\tau}$ is six times larger than in radiance values at 0.55 ${\mu}m$. At the surface, positive correlation dominates when ${\tau}$ <1, but negative correlation dominates when ${\tau}$ >1. However, radiance differences between andesite and pumice at 11 ${\mu}m$ are very small. These differences between two VA types are expressed as the polynomial regression functions and that increase as VA optical thickness increases. Finally, these results would allow VA to be better characterized by remote sensing sensors.

Instantaneous Monitoring of Pollen Distribution in the Atmosphere by Surface-based Lidar (지상 라이다를 이용한 대기중 꽃가루 분포 실시간 모니터링)

  • Noh, Young-Min;Mueller, Detlef;Lee, Kwon-Ho;Choi, Young-Jean;Kim, Kyu-Rang;Lee, Han-Lim;Choi, Tae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • The diurnal variation in pollen vertical distributions in the atmosphere was observed by a surface-based lidar remote sensing technique. Aerosol extinction coefficient and depolarization ratio at 532 nm were obtained from lidar measurements in spring ($4^{th}$ May - $2^{nd}$ June) 2009 at Gwangju Institute of Science & Technology (GIST) located in Gwangju, Korea ($35.15^{\circ}E$, $126.53^{\circ}N$). Unusual variations of depolarization ratio were observed for six days from $4^{th}$ to $9^{th}$ May. Depolarization ratios varied from 0.08 to 0.14 were detected at the low altitude in the morning. The altitude with those high depolarization ratios was increased up to 1.5 - 2.0 km at the time interval between 12:00 and 14:00 LT and then decreased. The temporal variations in high values of depolarization ratios from lidar measurements show good agreement in patterns with the sampled pollen concentrations measured using the Burkard trap sampler. This study demonstrates that the pollen distribution data obtained by lidar measurements can be a useful tool for investigating spatial and temporal characteristic of pollen particles.

The Characteristics Asian Dust Observed in Japan Deflecting the Korean Peninsula (2010. 5. 22.-5. 25.) (한반도를 돌아 일본에서 관측된 황사의 특징 (2010년 5월 22일-5월 25일))

  • Ahn, Bo-Young;Chun, Young-Sin
    • Journal of the Korean earth science society
    • /
    • v.32 no.4
    • /
    • pp.388-401
    • /
    • 2011
  • Asian dust was observed a total of 66 times in the springtime during the period from 2002 to 2010, with 26 cases in March, 23 cases in April and 17 cases in May. This study investigates a Asian dust episode that occurred during the period from 22 to 25 May 2010, based on synoptic weather patterns, wind vector at 850 hPa, relative humidity at 1000 hPa, Jet streams and wind vector at 300 hPa, PM10 concentration in Korea and satellite imagery. In this case, Asian dust originated on 22 May along the rear of a developing low pressure system in Mongolia. The Asian dust was then transported southeastward and bypassed the Korea peninsula from 23 to 24 May, before reaching Japan on 25 May. Jet streams on 24 May bypassed the Korean peninsula and induced the development of a surface low pressure centered over the peninsula. The resulting air flow was critical to the trajectory of the Asian dust, which likewise bypassed the Korean peninsula. 72-hour backward trajectory data reveal that the Shandong Peninsula and the East China Sea were the points of origin for the air flows that swept through the Japanese sites where Asian dust was observable to the naked eay. The Asian dust pathway is ascertained by horizontal distribution of the Asian dust of RGB imagery from MODIS satellites which captured the Asian dust moving over the Shandong Peninsula, the East China Sea, and northwest of the Kyushu region in Japan. Since the synoptic pattern and the transport way of the Asian dust case are far from typical ones, which Asian dust forecasting technique has long been based on, this study can be good example of exceptional Asian dust pattern and it will be used for more accurate Asian dust forecasting.