• Title/Summary/Keyword: 에너지 팜

Search Result 53, Processing Time 0.025 seconds

다수의 파력 발전용 부이 장치에 의한 파랑변형 모의

  • Lee, Jung-Lyul;Lee, Joo-Yong;Kim, In-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.511-515
    • /
    • 2009
  • 본 연구에서는 소규모 연안 도시의 미래 에너지 공급원으로서 실용성을 검토하고 있는 연안 에너지 팜(energy farm)에 의한 파랑의 변형을 모의한다. 에너지 팜에 사용되는 부이는 파랑의 산란은 물론 파랑 에너지를 흡수하는 장치로서 해안선에 도달하는 파랑 에너지 저감에 영향을 미친다. 적용하는 파랑 모형은 해안 구조물에 의한 파랑 에너지 흡수와 산란을 동시에 구현하는 WADEM-PB(WAve Deformation Model-Permeable Barrier)이다.

  • PDF

Smart Farm Control System for Improving Energy Efficiency (에너지 효율 향상을 위한 스마트팜 제어 시스템)

  • Choi, Minseok
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.331-337
    • /
    • 2021
  • The adaptation of smartfarm technology that converges ICT is increasing productivity and competitiveness in the agriculture. Technologies have been developed that enable environmental monitoring through various sensors and automatic control of the cultivation environment, and researches are underway to advance smartfarm technology using data generated from smartfarms. In this paper, an environmental control method to reduce the energy consumption of a smartfarm by using the environment and control data of the smartfarm is proposed. It was confirmed that energy consumption could be reduced compared to an independent environmental control method by creating an environmental prediction model using accumulated environmental data and selecting a control method to minimize energy consumption in a given situation by considering multiple environmental factors. In the future, research is needed to obtain higher energy efficiency through the advancement of the predictive model and the improvement of the complex control algorithms.

Characterization of Pretreatment by NaOH Leaching for Production of Bioethanol from Palm Waste (팜 부산물 활용 바이오 에탄올 생산을 위한 NaOH 전처리 공정의 특성)

  • Woo, Sang Sun;Park, Ji-Yeon;Na, Jong-Boon;Lee, Joon-Pyo;Lee, Jin-Suk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.106.1-106.1
    • /
    • 2010
  • 본 연구는 팜 부산물로부터 바이오 에탄올을 생산하는 전처리-당화-발효 공정의 첫 번째 단계인 전처리 공정에서 팜 부산물을 NaOH를 이용하여 효율적으로 전처리하고자 하였다. 암모니아 침지법과 NaOH 침출법을 비교한 결과 팜 부산물에 대해서는 암모니아 침지에 의한 탈리그닌 효과가 적으며 NaOH 전처리가 적합한 방법임을 알 수 있었다. 40-100 mesh 크기의 팜 부산물을 이용하여 반응온도(110, 130, $150^{\circ}C$), 반응시간(20, 40, 60분) 및 NaOH 농도(5%, 11%)의 변화에 따른 팜 부산물의 탈리그닌율과 글루코스 및 자일로스 회수율 간의 상호관계를 확인하였다. $150^{\circ}C$까지의 온도 조건에서 온도에 의한 자일로스의 분해는 일어나지 않는 것으로 확인되었다. 팜 부산물의 탈리그닌율은 시간이 증가할수록 증가하였으며, 높은 NaOH 농도에서 더 높은 것으로 나타났다. 그러나 글루코스 및 자일로스의 회수율은 높은 농도에서 낮게 나타났으며, 시간이 지날수록 감소하여 손실이 많은 것으로 나타났다. 따라서 NaOH 농도가 낮을수록 당 회수율은 높게 나타나지만, 탈리그닌율이 낮아 당화 효율이 떨어지므로 효소 당화 후에 최종 당 회수율이 높은 NaOH 농도 조건을 결정하여야 하겠다.

  • PDF

Designing an GRU-based on-farm power management and anomaly detection automation system (GRU 기반의 농장 내 전력량 관리 및 이상탐지 자동화 시스템 설계)

  • Hyeon seo Kim;Meong Hun Lee
    • Smart Media Journal
    • /
    • v.13 no.1
    • /
    • pp.18-23
    • /
    • 2024
  • Power efficiency management in smart farms is important due to its link to climate change. As climate change negatively impacts agriculture, future agriculture is expected to utilize smart farms to minimize climate impacts, but smart farms' power consumption may exacerbate the climate crisis due to the current electricity production system. Therefore, it is essential to efficiently manage and optimize the power usage of smart farms. In this study, we propose a system that monitors the power usage of smart farm equipment in real time and predicts the power usage one hour later using GRU. CT sensors are installed to collect power usage data, which are analyzed to detect and prevent abnormal patterns, and combined with IoT technology to efficiently manage and monitor the overall power usage. This helps to optimize power usage, improve energy efficiency, and reduce carbon emissions. The system is expected to improve not only the energy management of smart farms, but also the overall efficiency of energy use.

Design and Construction of Urban-type Energy Self-Supporting Smart-Farm Service Model (도심형 에너지 자립 스마트팜 서비스 모델 설계 및 구축)

  • Kim, Gwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1305-1310
    • /
    • 2019
  • Modern agriculture is changing from resource-oriented agriculture to technology-oriented agriculture. Agriculture, which combines science and technology, is recognized as a new growth engine, and governments, local governments, research institutes, and industry are working together to develop and disseminate various devices necessary for smart farms to build intelligent smart farms. Recently, research is being conducted to build a more intelligent agricultural environment by building a cloud platform. In this paper, we propose a plan to build an urban energy - independent smart farm that can utilize leisure time and agricultural activities by utilizing the rooftop of a city. Also, by using IT technology, various data of smart farm can be managed on remote server, and HMI module for controlling internal environment of smart farm can be developed to manage smart farm automatically or semi-automatically. The service model suggests a model that can manage the internal environment of the smart farm based on mobile.

Development of Smart Farm System for Minimizing Carbon Emissions (탄소배출 최소화를 위한 스마트팜 시스템의 개발)

  • Yoo, Nam-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.12
    • /
    • pp.1231-1236
    • /
    • 2016
  • Paris Agreement signed in January 2015 is a new rule that will replace the existing Kyoto Protocol. The new agreement needs new demands and challenges to minimize carbon emissions. Especially, even though agricultural sector occupies only 1.8% in the national energy consumption, the portion of the energy being occupied in agricultural production costs very high. Although renewable energy and energy-saving facilities is being developed and disseminated for replacing fossil fuel energy and saving energy, the installation-rate is not enough high. Thus, this paper developed Korean-style smart farm system, and carried out the experiment to show the performance of energy savings through analyzing proper environment in domestic situation.

ICT-based Integrated Renewable Energy Monitoring System for Agricultural Products (ICT 기반 농작물 대상 재생에너지 통합 모니터링 시스템 개발)

  • Kim, Yu-Bin;Oh, Yeon-Jae;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.593-602
    • /
    • 2020
  • Recently, as research on smart farms has been actively conducted, systems for efficiently cultivating crops have been introduced and various energy systems using renewable energy such as solar, geothermal and wind power generation have been proposed to save the energy. In this paper, we propose a new and renewable energy convergence system for crops that provides energy independence and improved crop cultivation environment. First, we present LPWA-based communication node and gateway for ICT-based data collection. Then we propose an integrated monitoring server that collects energy data, crop growth data, and environmental data through a communication node and builds it as big data to perform optimal energy management that reflects the characteristics of the environment for cultivating crops. The proposed system is expected to contribute to the production of low-cost, high-quality crops through the fusion of renewable energy and smart farms.

The waste heat utilization in container greenhouse and smart farm related technology based on IOT (컨테이너 온실에서 폐열 활용 및 IOT 기반의 스마트 팜 연계 기술)

  • Hwang, Woo-jeong;Jung, Jung-hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.415-418
    • /
    • 2017
  • Recently, the demand for energy efficiency improvement technology through the connection of waste heat energy and SmartGrid has been increasing. Thus, investments for the cultivation of high value crops and produce is increasing through research aimed at synthetic technology in real-time utilization of smart farms and waste heat energy with the concept of using container greenhouses and plant factories. In this aspect, we have carried out research on a practical application technology that will help farmers to increase the economic effectiveness of LED based plant factories in terms of energy efficiency. This can provide opportunities to connect with the large scale automated smart farms in the future. In this study, we focused on the economic effectiveness of crop cultivation using cooling technology in a container greenhouse through waste heat energy. Hereafter, in order to further advance the technology of real-time monitoring/control of the absorption chiller which is used through the container greenhouses and waste heat energy by using IOT, we would like to propose research on new ideas of agricultural technology that can maximize the utility of cooling energy by operating a mobile gateway based on Raspberry PI.

  • PDF

A Study on the Thermal Prediction Model cf the Heat Storage Tank for the Optimal Use of Renewable Energy (신재생 에너지 최적 활용을 위한 축열조 온도 예측 모델 연구)

  • HanByeol Oh;KyeongMin Jang;JeeYoung Oh;MyeongBae Lee;JangWoo Park;YongYun Cho;ChangSun Shin
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.63-70
    • /
    • 2023
  • Recently, energy consumption for heating costs, which is 35% of smart farm energy costs, has increased, requiring energy consumption efficiency, and the importance of new and renewable energy is increasing due to concerns about the realization of electricity bills. Renewable energy belongs to hydropower, wind, and solar power, of which solar energy is a power generation technology that converts it into electrical energy, and this technology has less impact on the environment and is simple to maintain. In this study, based on the greenhouse heat storage tank and heat pump data, the factors that affect the heat storage tank are selected and a heat storage tank supply temperature prediction model is developed. It is predicted using Long Short-Term Memory (LSTM), which is effective for time series data analysis and prediction, and XGBoost model, which is superior to other ensemble learning techniques. By predicting the temperature of the heat pump heat storage tank, energy consumption may be optimized and system operation may be optimized. In addition, we intend to link it to the smart farm energy integrated operation system, such as reducing heating and cooling costs and improving the energy independence of farmers due to the use of solar power. By managing the supply of waste heat energy through the platform and deriving the maximum heating load and energy values required for crop growth by season and time, an optimal energy management plan is derived based on this.