• Title/Summary/Keyword: 에너지 정보

Search Result 5,016, Processing Time 0.038 seconds

The Effect of the Performance Compensation System on Organizational Effectiveness and Motivation and Corporate Performance : Focused on the Employees of Automobile Maintenance Service Companies (성과보상제도가 조직유효성 및 동기부여와 기업성과에 미치는 영향 : 자동차정비 서비스업체 종업원을 중심으로)

  • Hwang, Jung-Yup;Park, Chan-Kwon;Park, Sung-Min;Kim, Chae-Bogk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.95-114
    • /
    • 2021
  • This study is to study the effect of corporate performance compensation system on organizational effectiveness and motivation, and the effect of organizational effectiveness and motivation on corporate performance, targeting employees of automobile maintenance service companies. 430 questionnaires obtained through the survey were used for the study. As a result of testing the research hypothesis, tangible reward had a significant positive (+) effect on job satisfaction, but intangible reward had a positive (+) effect on job satisfaction, but it was not significant. Also, tangible and intangible rewards have a significant positive (+) effect on organizational commitment and motivation. Job satisfaction has a significant positive (+) effect on productivity and service quality. However, organizational commitment had a significant positive (+) effect on productivity, but had a positive (+) effect on service quality, but was not significant. Lastly, motivation has a significant positive (+) effect on productivity and service quality. Through the research results, the relationship structure between the performance compensation system, organizational effectiveness and motivation, and corporate performance was identified, and the application of the performance compensation system to employees in the automobile industry was presented.

Recent Progress in Conductive Polymer-based Membranes (전도성 고분자 분리막의 최근 연구동향)

  • Park, Shinyoung;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.2
    • /
    • pp.101-119
    • /
    • 2021
  • The demand for clean water is virtually present in all modern human societies even as our society has developed increasingly more advanced and sophisticated technologies to improve human life. However, as global climate change begins to show more dramatic effects in many regions in the world, the demand for a cheap, effective way to treat wastewater or to remove harmful bacteria, microbes, viruses, and other solvents detrimental to human health has continued to remain present and remains as important as ever. Well-established synthetic membranes composed of polyaniline (PANI), polyvinylidene fluoride (PVDF), and others have been extensively studied to gather information regarding the characteristics and performance of the membrane, but recent studies have shown that making these synthetic membranes conductive to electrical current by doping the membrane with another material or incorporating conductive materials onto the surface of the membrane, such as allotropes of carbon, have shown to increase the performance of these membranes by allowing the adjustability of pore size, improving antifouling and making the antibacterial property better. In this review, modern electrically conductive membranes are compared to conventional membranes and their performance improvements under electric fields are discussed, as well as their potential in water filtration and wastewater treatment applications.

The Study for Analysis of Impact Force of Debris Flow According to the Location of Check Dam (사방댐 위치변화에 따른 토석류의 충격력 해석에 관한 연구)

  • Kim, Sung-Duk;Lee, Ho-Jin;Chang, Hyung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.409-418
    • /
    • 2019
  • Debris flows occur in mountainous areas due to heavy rains resulting from climate change and result in disasters in the downstream area. The purpose of this study is to estimate the impact force of a debris flow when a check dam according is installed in various locations in the channel of a highly mountainous area. A Finite Differential Element Method (FDM) model was used to simulate the erosion and deposition based on the equation for the mass conservation and momentum conservation while considering the continuity of the fluid. The peak impact force from the debris flow occurred at 0 to 5 sec and 15 to 20 sec. When the supplied water discharge was increased, greater peak impact force was generated at 16 to 19 sec. This means that when increasing the water supply, the velocity of the debris flow became faster, which results in increased energy of the consolidation between the particles of the water and the sediment made. If a number of check dams were to be set up, it would be necessary to investigate the impact force at each location of the check dam. The results of this study could provide useful information in predicting the impact force of the debris flow and in installing the check dams in appropriate locations.

A Study on Vulnerability Assessment to Climate Change in Siheung-si (시흥시 기후변화 취약성 평가 연구)

  • Yun, Seong Gwon;Choi, Bong Seok;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • This study has purpose to minimize the impact of climate change of Siheung. Vulnerability assessment was carried out for establishing the Siheung Climate Change Master Plan. Climate change vulnerability assessment analyzed using climate exposure, sensitivity and adaptive capacity indicators. A proxy variable is selected from each indicator. Meteorological data uses the RCP scenarios provided by the Meteorological Administration, and this study assumes that the same trend will continues in the future. Siheung are vulnerable to heavy rains in the flooded roads and farmland. Also, it is necessary to be careful heat wave in summer. The size and scale of the damage depends on the city's ability to respond to the impacts of climate change. It is necessary to make a adaptation plan for climate change impact assessment and vulnerability analysis. This study will be used to make Siheung Climate Change Master Plan and to determine the priority of the policy as guideline. It is expected that this study is helpful to pursue climate change vulnerability assessment of other local governments.

Development of BMD Phantom using 3D Printing (3D 프린팅을 이용한 골밀도 팬텀 개발)

  • Lee, Junho;Choi, Kwan-Yong;Hong, Sung-Yong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.185-192
    • /
    • 2019
  • DXA is the most commonly used BMD examination equipment with the best performance on reflecting the biological alteration with tiny change of bone density. In spite of the importance of the quality control to maintain the accuracy and precision of the examination, considerable number of hospitals are not conducting QC due to the difficulty and high cost of the phantom product. This study develops the cross revision phantom with 3D printer and the change of the degree of infilling filaments which can be readily secured, and provides the usefulness assessment of the developed phantom by comparing with existing products. The Hounsfield Units of ABS, TPU, PLA, 30% Cu-PLA, and 30% Al-PLA are assessed. The Hounsfield Units result at infilling rate 100% was $-149.74{\pm}2.36$, $-55.62{\pm}7.14$, $-7.68{\pm}3.82$, $87.53{\pm}1.07$, and $1795.20{\pm}16.15$. The L1, L2, L3 BMD of 3D printing phantom with linear regression model were $0.620{\pm}0.010g/cm^2$, $1.092{\pm}0.025g/cm^2$, $1.554{\pm}0.026g/cm^2$ which are statistically relevant to the existing phantom products. This result provides the base line data for various medical phantom produce and capability of proper quality control of DXA equipment.

Flow-Induced Noise Prediction for Submarines (잠수함 형상의 유동소음 해석기법 연구)

  • Yeo, Sang-Jae;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Seol, Hanshin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.930-938
    • /
    • 2018
  • Underwater noise radiated from submarines is directly related to the probability of being detected by the sonar of an enemy vessel. Therefore, minimizing the noise of a submarine is essential for improving survival outcomes. For modern submarines, as the speed and size of a submarine increase and noise reduction technology is developed, interest in flow noise around the hull has been increasing. In this study, a noise analysis technique was developed to predict flow noise generated around a submarine shape considering the free surface effect. When a submarine is operated near a free surface, turbulence-induced noise due to the turbulence of the flow and bubble noise from breaking waves arise. First, to analyze the flow around a submarine, VOF-based incompressible two-phase flow analysis was performed to derive flow field data and the shape of the free surface around the submarine. Turbulence-induced noise was analyzed by applying permeable FW-H, which is an acoustic analogy technique. Bubble noise was derived through a noise model for breaking waves based on the turbulent kinetic energy distribution results obtained from the CFD results. The analysis method developed was verified by comparison with experimental results for a submarine model measured in a Large Cavitation Tunnel (LCT).

Electroencephalogram(EEG) Activation Changes and Correlations of signal with EMG Output by left and right biceps (좌우 이두근의 근전도 출력에 따른 뇌파의 활성도 변화와 관련성 탐색)

  • Jeon, BuIl;Kim, Jongwon
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.727-734
    • /
    • 2019
  • This paper confirms whether the movement or specific operation of the muscles in the process of transferring a person from the brain can find a signal showing an essential feature of a certain part of the brain. As a rule, the occurrence of EEG(Electroencephalogram) changes when a signal is received from a specific action or from an induced action. These signals are very vague and difficult to distinguish from the naked eye. Therefore, it is necessary to define a signal for analysis before classification. The EEG form can be divided into the alpha, beta, delta, theta and gamma regions in the frequency ranges. The specific size of these signals does not reflect the exact behavior or intention, since the band or energy difference of the activated frequencies varies depending on the EEG measurement domain. However, if different actions are performed in a specific method, it is possible to classify the movement based on EEG activity and to determine the EEG tendency affecting the movement. Therefore, in this article, we first study the EEG expression pattern based on the activation of the left and right biceps EMG, and then we determine whether there is a significant difference between the EEG due to the activation of the left and right muscles through EEG. If we can find the EEG classification criteria in accordance with the EMG activation, it can help to understand the form of the transmitted signal in the process of transmitting signals from the brain to each muscle. In addition, we can use a lot of unknown EEG information through more complex types of brain signal generation in the future.

Algal Contribution to the Occurrence of Refractory Organic Matter in Lake Paldang, South Korea: Inferred from Dual Stable Isotope (13C and 15N) Tracer Experiment (팔당호 난분해성 유기물에 대한 조류기원 유기물의 기여)

  • Lee, Yeonjung;Ha, Sun-Yong;Hur, Jin;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.192-201
    • /
    • 2019
  • While a fairly large amount of organic matter is produced daily via phytoplankton photosynthesis in Lake Paldang, South Korea, knowledge of the role of algal-derived organic matter (OM) as a refractory OM source is not adequate. To understand the contribution of algal-derived OM to the refractory pool, biodegradation experiment and $KMnO_4$ oxidation experiment were conducted for 60 days using $^{13}C$ and $^{15}N$ labeled natural phytoplankton assemblage. The assemblage was collected from Lake Paldang on May 20, 2010. The photosynthetically produced total organic carbon ($TO^{13}C$), particulate organic carbon ($PO^{13}C$), and particulate nitrogen ($P^{15}N$) remained at 26%, 20%, and 17% of the initial concentrations, respectively, in the form of non-biodegradable organic matter. In addition, 12% and 38% of $PO^{13}C$ remained after $KMnO_4$ treatment on Day 0 and 60, respectively. These results indicate that photosynthetic products could be an important source of refractory organic matter after microbial degradation. Moreover, the microbially transformed algal-derived OM could contribute to the oxidation rate of the chemical oxygen demand.

Performance analysis of OFDM and CDMA communication methods in underwater acoustic channel (수중 채널 환경에서 OFDM 및 CDMA 통신 방식별 성능 분석)

  • Kim, Kil-Yong;Kim, Min-Sang;Ko, Hak-Lim;Im, Tae-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.30-38
    • /
    • 2019
  • In recent years, researches on various communication methods have been conducted, particularly on OFDM (Orthogonal Frequency Division Multiplexing) and CDMA (Code Division Multiple Access) methods, as the use of underwater communication increases. While OFDM is, in general, advantageous in that it is resistant to Doppler in the water and it enables a high-speed communication, CDMA is resistant to frequency selective fading in the water and it can reduce energy consumption. Therefore, in this paper, we performed experiments in the shallow water in Western Sea of Korea to analyze the performance of OFDM and CDMA communication systems in the underwater channel environment. The maximum delay spread and Doppler spread were drawn by using the data obtained from the real sea area in order to analyze the underwater channel environment characteristics of the shallow water in Western Sea of Korea. The communication performances of OFDM and CDMA are shown as coded BER (Bit Error Rate) according to the variation of the maximum delay spread and the Doppler spread, respectively. The result of the analysis show that the OFDM method has more resistant performances to the underwater channel environment changes than the CDMA method.

A Security Nonce Generation Algorithm Scheme Research for Improving Data Reliability and Anomaly Pattern Detection of Smart City Platform Data Management (스마트시티 플랫폼 데이터 운영의 이상패턴 탐지 및 데이터 신뢰성 향상을 위한 보안 난수 생성 알고리즘 방안 연구)

  • Lee, Jaekwan;Shin, Jinho;Joo, Yongjae;Noh, Jaekoo;Kim, Jae Do;Kim, Yongjoon;Jung, Namjoon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.75-80
    • /
    • 2018
  • The smart city is developing an energy system efficiently through a common management of the city resource for the growth and a low carbon social. However, the smart city doesn't counter a verification effectively about a anomaly pattern detection when existing security technology (authentication, integrity, confidentiality) is used by fixed security key and key deodorization according to generated big data. This paper is proposed the "security nonce generation based on security nonce generation" for anomaly pattern detection of the adversary and a safety of the key is high through the key generation of the KDC (Key Distribution Center; KDC) for improvement. The proposed scheme distributes the generated security nonce and authentication keys to each facilities system by the KDC. This proposed scheme can be enhanced to the security by doing the external pattern detection and changed new security key through distributed security nonce with keys. Therefore, this paper can do improving the security and a responsibility of the smart city platform management data through the anomaly pattern detection and the safety of the keys.