DOI QR코드

DOI QR Code

팔당호 난분해성 유기물에 대한 조류기원 유기물의 기여

Algal Contribution to the Occurrence of Refractory Organic Matter in Lake Paldang, South Korea: Inferred from Dual Stable Isotope (13C and 15N) Tracer Experiment

  • 이연정 (한국해양과학기술원 해양생태연구센터) ;
  • 하선용 (극지연구소 극지해양과학 연구부) ;
  • 허진 (세종대학교 환경에너지공간융합학과) ;
  • 신경훈 (한양대학교 해양융합과학과)
  • Lee, Yeonjung (Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology) ;
  • Ha, Sun-Yong (Division of Polar Ocean Sciences, Korea Polar Research Institute) ;
  • Hur, Jin (Department of Environment, Energy & Geoinformatics, Sejong University) ;
  • Shin, Kyung-Hoon (Department of Marine Science and Convergence Engineering, Hanyang University)
  • 투고 : 2019.06.10
  • 심사 : 2019.09.15
  • 발행 : 2019.09.30

초록

효과적인 물환경관리계획을 수립하기 위해서는 다양한 기원의 유기물이 난분해성 유기물 농도 증가에 영향을 줄 수 있는지 여부를 파악하는 것이 중요하다. 특히 상당량의 광합성 산물은 식물플랑크톤에 의해 매일 생성되고 있지만, 이들이 수계 내 난분해성 유기물에 기여하는지에 대한 정보는 부족하다. 본 연구에서는 $^{13}C$$^{15}N$ 추적자 첨가실험을 통해 조류기원 유기물이 생분해(60일, 암배양) 및 산화제(과망간산칼륨) 처리 후 분해되지 않고 잔존하는지 여부를 확인하였다. 생분해 실험 결과 광합성을 통해 생성된 총 유기탄소($TO^{13}C$), 입자성 유기탄소($PO^{13}C$), 입자성 질소($P^{15}N$)는 각각 26%, 20%, 17%가 비 생분해성 유기물로 잔존하였다. 또한 상당량의 $PO^{13}C$가 과망간산칼륨에 의해 산화되지 않고 잔존하였다(초기: 12%, 60일 암배양 후: 38%). 이는 미생물에 의해 사용된 후 남아있는 조류기원 유기물이 난분해성 유기물에 기여할 수 있음을 의미한다. 또한 미생물에 의해 변형된 조류기원 유기물의 양은 COD 산화율 및 유기물 지표 간 격차에 영향을 줄 것으로 사료된다.

While a fairly large amount of organic matter is produced daily via phytoplankton photosynthesis in Lake Paldang, South Korea, knowledge of the role of algal-derived organic matter (OM) as a refractory OM source is not adequate. To understand the contribution of algal-derived OM to the refractory pool, biodegradation experiment and $KMnO_4$ oxidation experiment were conducted for 60 days using $^{13}C$ and $^{15}N$ labeled natural phytoplankton assemblage. The assemblage was collected from Lake Paldang on May 20, 2010. The photosynthetically produced total organic carbon ($TO^{13}C$), particulate organic carbon ($PO^{13}C$), and particulate nitrogen ($P^{15}N$) remained at 26%, 20%, and 17% of the initial concentrations, respectively, in the form of non-biodegradable organic matter. In addition, 12% and 38% of $PO^{13}C$ remained after $KMnO_4$ treatment on Day 0 and 60, respectively. These results indicate that photosynthetic products could be an important source of refractory organic matter after microbial degradation. Moreover, the microbially transformed algal-derived OM could contribute to the oxidation rate of the chemical oxygen demand.

키워드

과제정보

연구 과제번호 : 한강수계 난분해성 물질 증감요인 규명 및 관리방안 연구

연구 과제 주관 기관 : 환경부, 한국연구재단

참고문헌

  1. Baines, S.B. and M.L. Pace. 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnology and Oceanography 36(6): 1078-1090. https://doi.org/10.4319/lo.1991.36.6.1078
  2. Blair, G.J., R.D. Lefroy and L. Lisle. 1995. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research 46: 1459-1466. https://doi.org/10.1071/AR9951459
  3. Blair, N., R.D. Faulkner, A.R. Till and P.R. Poulton. 2006. Long-term management impacts on soil C, N and physical fertility. Part I: Broadbalk experiment. Soil & Tillage Research 91: 30-38. https://doi.org/10.1016/j.still.2005.11.002
  4. Byun, J.H., S.J. Hwang, B.H. Kim, J.R. Park, J.K. Lee and B.J. Lim. 2015. Relationship between a dense population of cyanobacteria and odorous compounds in the North Han River system in 2014 and 2015. Korean Journal of Ecology and Environment 48(4): 263-271. https://doi.org/10.11614/KSL.2015.48.4.263
  5. Chen, W. and P.J. Wangersky. 1996. Rates of microbial degradation of dissolved organic carbon from phytoplankton cultures. Journal of Plankton Research 18(9): 1521-1533. https://doi.org/10.1093/plankt/18.9.1521
  6. Cox, L., R. Celis, M.C. Hermosín, J. Cornejo, A. Zsolnay and K. Zeller. 2000. Effect of organic amendments on herbicide sorption as related to the nature of the dissolved organic matter. Environmental Science & Technology 34: 4600-4605. https://doi.org/10.1021/es0000293
  7. Dawes, C.J. 1966. A light and electron microscopic survey of algal cell walls. II. Chlorophyceae. The Ohio Journal of Science 66: 317-326.
  8. De Figueiredo, D.R., U.M. Azeiteiro, S.M. Esteves, F.J.M. Gonçalves and M.J. Pereira. 2004. Microcystin-producing blooms - a serious global public health issue. Ecotoxicology and Environmental Safety 59: 151-163. https://doi.org/10.1016/j.ecoenv.2004.04.006
  9. Dodge, J.D. 1973. The fine structure of algal cells. Academic Press, New York.
  10. Dodge, J.D. and R.M. Crawford. 1970. A survey of thecal fine structure in Dinophyceae. Botanical Journal of the Linnean Society 63: 53-67. https://doi.org/10.1111/j.1095-8339.1970.tb02302.x
  11. Dong, W., J. Wan, T.K. Tokunaga, B. Gilbert and K.H. Williams. 2017. Transport and humification of dissolved organic matter within a semi-arid floodplain. Journal of Environmental Sciences 57: 24-32. https://doi.org/10.1016/j.jes.2016.12.011
  12. Driscoll, C.T., K.M. Driscoll, H. Fakhraei and K. Civerolo. 2016. Long-term temporal trends and spatial patterns in the acid-base chemistry of lakes in the Adirondack region of New York in response to decreases in acidic deposition. Atmospheric Environment 146: 5-14. https://doi.org/10.1016/j.atmosenv.2016.08.034
  13. Evans, C.D., D.T. Monteith and D.M. Cooper. 2005. Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environmental Pollution 137: 55-71. https://doi.org/10.1016/j.envpol.2004.12.031
  14. Hama, T., T. Miyazaki, Y. Ogawa, T. Iwakuma, M. Takahashi, A. Otsuki and S. Ichimura. 1983. Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope. Marine Biology 73: 31-36. https://doi.org/10.1007/BF00396282
  15. Hama, T., K. Yanagi and J. Hama. 2004. Decrease in molecular weight of photosynthetic products of marine phytoplankton during early diagenesis. Limnology and Oceanography 49(2): 471-481. https://doi.org/10.4319/lo.2004.49.2.0471
  16. Hanamachi, Y., T. Hama and T. Yanai. 2008. Decomposition process of organic matter derived from freshwater phytoplankton. Limnology 9(1): 57-69. https://doi.org/10.1007/s10201-007-0232-2
  17. Hong, H.C., M.H. Wong, A. Mazudmer and Y. Liang. 2008. Trophic state, natural organic matter and disinfection by-product formation potential of drinking water reservoirs around Pearl River Delta Region (China). Journal of Hydrology 359, 164-173. https://doi.org/10.1016/j.jhydrol.2008.06.024
  18. Hunt, J.F. and T. Ohno. 2007. Characterization of fresh and decomposed dissolved organic matter using excitation-emission matrix fluorescence spectroscopy and multiway analysis. Journal of Agricultural and Food Chemistry 55: 2121-2128. https://doi.org/10.1021/jf063336m
  19. Hur, J. and J.K. Shin, S.W. Park. 2006. Characterizing fluorescence properties of dissolved organic matter for water quality management of rivers and lakes. Journal of Korean Society of Environmental Engineers 28(9): 940-948.
  20. Kalbitz, K., S. Solinger, J.H. Park, B. Michalzik and E. Matzner. 2000. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Science 165(4): 277-304. https://doi.org/10.1097/00010694-200004000-00001
  21. Karim, A.G.A. and F.E. Round. 1967. Microfibrils in the lorica of the fresh-water alga Dinobryon. New Phytologist 66: 409-412. https://doi.org/10.1111/j.1469-8137.1967.tb06020.x
  22. Kim, H.S., J.J. Hong, J.U. Seong, K.S. Choi and J.C. Park. 2013. Comparison of organic matter distribution in major tributaries of the Nakdong River. Journal of Korean Society on Water Environment 29(5): 618-624.
  23. Kolmakov, V.I. and N.A. Gaevskii, E.A. Ivanova, O.P. Dubovskaya, I.V. Gribovskaya and E.S. Kravchuk. 2002. Comparative analysis of ecophysiological characteristics of Stephanodiscus hantzschii Grun. in the periods of its bloom in recreational water bodies. Russian Journal of Ecology 33(2): 97-103. https://doi.org/10.1023/A:1014448707663
  24. Kragh, T. and M. Sondergaard. 2009. Production and decomposition of new DOC by marine plankton communities: carbohydrates, refractory components and nutrient limitation. Biogeochemistry 96(1): 177-187. https://doi.org/10.1007/s10533-009-9357-1
  25. Lee, Y., M.S. Kim, E.J. Won and K.H. Shin. 2006. An application of $^{13}C$ tracer for the determination of size fractionated primary productivity in upper stream of Lake Shihwa. Korean Journal of Limnology 39(1): 93-99.
  26. Lee, Y., B. Lee, J. Hur, J.O. Min, S.Y. Ha, K. Ra, K.T. Kim and K.H. Shin. 2016. Biodegradability of algal-derived organic matter in a large artificial lake by using stable isotope tracers. Environmental Science and Pollution Research 23: 8358-8366. https://doi.org/10.1007/s11356-016-6046-1
  27. Lee, Y.G. 2013. Add to living environmental standard and health protection standard, including standards for total organic carbon and 1,4-dioxane. Journal of Environmental Hi-technology 21(1): 38-41.
  28. Lonborg, C., K. Davidson, X.A. Alvarez-Salgado and A.E.J. Miller. 2009. Bioavailability and bacterial degradation rates of dissolved organic matter in a temperate coastal area during an annual cycle. Marine Chemistry 113(3): 219-226 https://doi.org/10.1016/j.marchem.2009.02.003
  29. Lui, Y.S., J.W. Qiu, Y.L. Zhang, M.H. Wong and Y. Liang. 2011. Algal-derived organic matter as precursors of disinfection by-products and mutagens upon chlorination. Water Research 45, 1454-1462. https://doi.org/10.1016/j.watres.2010.11.007
  30. Manninen, N., H. Soinne, R. Lemola, L. Hoikkala and E. Turtola. 2018. Effects of agricultural land use on dissolved organic carbon and nitrogen in surface runoff and subsurface drainage. Science of the Total Environment 618: 1519-1528. https://doi.org/10.1016/j.scitotenv.2017.09.319
  31. Min, J.O., S.Y. Ha, M.H. Chung, B.H. Choi, Y. Lee, S.H. Youn, W.D. Yoon, J.S. Lee and K.H. Shin. 2012. Seasonal variation of primary productivity and pigment of phytoplankton community structure in the Seomjin Estuary. Korean Journal of Limnology 45(2): 139-149.
  32. Ministry of Environment. 2004. Official testing method with respect to water pollution process.
  33. Ministry of Environment. 2011. Increasing trend of refractory organic matters and the management plans for the Han River basin.
  34. Ministry of Environment. 2013. ECOREA-Environmental Review 2013.
  35. Ngome, A.F., M. Becker, K.M. Mtei and F. Mussgnug. 2011. Fertility management for maize cultivation in some soils of Western Kenya. Soil & Tillage Research 117: 69-75. https://doi.org/10.1016/j.still.2011.08.010
  36. Luan, M., G. Jing, Y. Piao, D. Liu and L. Jin. 2017. Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation. Arabian Journal of Chemistry 10: S769-S776. https://doi.org/10.1016/j.arabjc.2016.11.005
  37. Ogawa, H., Y. Amagai, I. Koike, K. Kaiser and R. Benner. 2001. Production of refractory dissolved organic matter by bacteria. Science 292(5518): 917-920. https://doi.org/10.1126/science.1057627
  38. Ohnishi, Y., M. Fujii, S. Murashige, A. Yuzawa, H. Miyasaka and Y. Suzuki. 2004. Microbial decomposition of organic matter derived from phytoplankton cellular components in seawater. Microbes and Environments 19(2): 128-136. https://doi.org/10.1264/jsme2.19.128
  39. Ohno, T. 2002. Fluorescence inner-filtering correction for determining the humification index of dissolved organicmatter. Environmental Science & Technology 36(4): 742-746. https://doi.org/10.1021/es0155276
  40. Parker, B.C. 1964. The structure and chemical composition of cell walls of three Chlorophycean algae. Phycologia 4: 63-74. https://doi.org/10.2216/i0031-8884-4-2-63.1
  41. Pett, R.J. 1989. Kinetics of microbial mineralization of organic carbon from detrital Skeletonema costatum cells. Marine Ecology Progress Series 52(2): 123-128. https://doi.org/10.3354/meps052123
  42. Sawicka, K., E.C. Rowe, C.D. Evans, D.T. Monteith, E.I. Vanguelova, A.J. Wade and J.M. Clark. 2017. Modelling impacts of atmospheric deposition and temperature on long-term DOC trends. Science of the Total Environment 578: 323-336. https://doi.org/10.1016/j.scitotenv.2016.10.164
  43. Servais, P., A. Anzil and C. Ventresque. 1989. Simple method for determination of biodegradable dissolved organic carbon in water. Applied and Environmental Microbiology 55: 2732-2734. https://doi.org/10.1128/AEM.55.10.2732-2734.1989
  44. Shen, Z., J. Niu, X. Wang, H. Wang and X. Zhao. 2013. Distribution and transformation of nutrients in Large-Scale Lakes and reservoirs: the three gorges reservoir. Springer Science & Business Media. http://www.springer.com/us/book/9783642349638.
  45. Singh, S., S. Dutta and S. Inamdar. 2014. Land application of poultry manure and its influence on spectrofluorometric characteristics of dissolved organic matter. Agriculture, Ecosystems and Environment 193: 25-36. https://doi.org/10.1016/j.agee.2014.04.019
  46. Tirol-Padre, A. and J.K. Ladha. 2004. Assessing the reliability of permanganate-oxidizable carbon as an index of soil labile carbon. Soil Science Society of America Journal 68: 969-978. https://doi.org/10.2136/sssaj2004.9690
  47. Vollertsen, J. and T. Hvitved-Jacobsen. 2002. Biodegradability of wastewater - a method for COD- fractionation. Water Science & Technology 45(3): 25-34. https://doi.org/10.2166/wst.2002.0046