• Title/Summary/Keyword: 에너지 저장 장치

검색결과 755건 처리시간 0.025초

플라이휠 에너지 저장 장치용 초고속 전동발전기의 설계 및 특성시험 (Design and Performance Test of High-Speed Motor/Generator for the Flywheel Energy Storage System)

  • 장석명;서진호;최상규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 A
    • /
    • pp.272-274
    • /
    • 1998
  • This paper treated the design and performance test of high speed motor/generator used in the flywheel energy storage system. The unique characteristics of the motor in this paper is the it doesn't contain any magnetic material. The field system was constructed by using Halbach array that generates the magnetic field with the permanent magnet only. The armature was also composed of plastic bobbin and winding. This paper shows the design results have a good agreement with the experimental results.

  • PDF

일차근사신뢰도법을 이용한 초전도 자기에너지 저장장치 권선 최적설계 (Optimization of SMES Windings Utilizing the First-Order Reliability Method)

  • 김동욱;정상식;성영화;김동훈
    • 전기학회논문지
    • /
    • 제60권7호
    • /
    • pp.1354-1359
    • /
    • 2011
  • This paper presents a novel methodology for improving the reliability of electromagnetic devices and machines based on the reliability-based design optimization method. To achieve this, the method includes reliability analysis and optimization process taking into account uncertainties of design variables. One of the first-order reliability analysis techniques, called reliability index approach, is adopted to evaluate the reliability of performance functions with respect to probabilistic design variables. The proposed method has been successfully applied to designing a superconducting magnetic energy storage system. For verifying the efficiency and accuracy of the method, the results are compared with those of conventional optimization methods.

슈퍼커패시터를 이용한 전기차량용 회생제동 에너지 저장장치 개발 (Development of Regenerative Energy Storage System for An Electric Vehicle Using Super-Capacitors)

  • 정대원
    • 전기학회논문지
    • /
    • 제60권3호
    • /
    • pp.544-551
    • /
    • 2011
  • This paper presents the circuit arrangement and effective control method of regenerative energy storage system for an electric vehicle using super-capacitors as the braking energy storage element. A bi-directional controlled current flow of the DC-DC converters with the capacitor bank is connected in parallel with battery, and is controlled so that the whole of the braking energy is effectively absorbed into the capacitors and released back to the electric motor upon acceleration. The converter needs the series-parallel switching circuit for making the best use of the series capacitors and for limiting the step-up ratio of the boost converter. The proposed methods are verified by computer simulation and experimental set-up. They are usefully applied to the electric vehicles such as green cars, electric motorcycles, bike, etc which are power- supplied by the electric batteries.

플라이휠 에너지 저장장치의 진동 제어 성능 평가 (Vibration Control of Flywheel Energy Storage System)

  • 이정필;한상철;박병철;한영희;박병준;정세용
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1750-1756
    • /
    • 2009
  • In this paper, 5 kWh class Superconductor Flywheel Energy Storage System (SFES) was constructed including motor/generator, superconductor magnetic bearing(SMB), composite rotor and electromagnetic damper(EMD) system. High speed rotation test was performed after levitating flywheel rotor only using EMD without SMB. the PD controller of EMD was designed. the control system is constructed using xPC which is real time digital control system. the results of high speed rotation test showed that proposed EMD system have sufficient damping in cylindrical mode and conical mode, and vibration of wheel was suppressed below 10 ${\mu}m$.

초전도에너지 저장장치를 이용한 전력계통 안정도 향상 (Power System Stabilization Using SMES)

  • 조병욱;박종근
    • 대한전기학회논문지
    • /
    • 제34권6호
    • /
    • pp.213-219
    • /
    • 1985
  • Superconducting Magnetic Energy Storage (SMES) system can be used for power system stabilization by absorbing or discharging active and reactive power through thyristor-comtrolled converters. In this paper, we have proposed a control algorithm that the active and reactive powers of SMES are simultaneously controlled to increase power system dynamic stability. The proposed method was applied to one machine-infinite and three machines and three load model systems. And it has been shown that the proposed algorithm is more effective in power system stabilization than the conventional one that only the active power of SMES is controlled. Eigenvalue sensitivity analysis method is introduced to estimate the optimal location of SMES in the sense of the power system oscillation mode.

  • PDF

초전도에너지 저장장치의 운전주기에 따른 최적교류손실 결정에 관한 연구 (Optimum AC losses Determination for Duty Cycle of Superconductive Magnetic Energy Storage)

  • Hwang, Seuk-Yong
    • 대한전기학회논문지
    • /
    • 제39권7호
    • /
    • pp.653-667
    • /
    • 1990
  • Superconductor is consolidated, for required current capacity, with proper numbers of basic strands which are multifilamentary composites. Althouth superconductors are perfectly loss-free under DC conditions of current and field, AC losses occur under time-varying condition of the current and field. The AC losses are a controllable inherent characteristics of supercondectors. The AC losses dependent on the changing rate of current and field can be reduced by reducing the filament diameter. On the other hand, finer filament results in manufacturing cost increase. Therefore, in this paper optimization technique of superconductor for SMES is proposed from the viewpoint of AC loss reduction and manufacturing cost increase. The case study shows that the technique can be effectively used for the design of superconductor for SMES, appreciating the influence of various parameters related to superconductor itself and operating condition of SMES. As a result of the case study, it is confirmed that the technique is more effective for the design of superconductor for SMES for electric power power system stabilization rather then SMES for energy storage.

  • PDF

알루미늄이온(Al-Ion) 배터리의 전기화학적 특성분석 (Electrochemical Characteristic Analysis of Aluminum-Ion Battery)

  • 한동호;김종훈;고형호;탁용석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.459-460
    • /
    • 2017
  • 기존의 리튬계열 전지의 한계성을 극복하기 위해 전 세계적으로 차세대전지(new-generation battery)가 연구되고 있다. 이 중, 알루미늄이온(Aluminum-Ion) 배터리는 저렴한 가격과 고용량 가능성으로 큰 각광을 받고 있다. 이에, 본 논문에서는 향후 전기자동차(EV)와 에너지 저장장치(ESS)에 사용이 기대되는 알루미늄이온 배터리를 소개하고, 이의 직접 제조 및 전기화학적 특성분석을 실시하였다. 이를 통해, 기존 리튬계열 전지와의 유사성 및 차이점을 파악하고 어플리케이션의 적용 타당성을 판단하였다.

  • PDF

병렬 연결된 대용량 리튬 배터리 모듈의 기동전류 예측 연구 (Starting current estimation of the parallel connected large capacity battery modules)

  • 이성준;김종훈;박종후;하미림;송현철
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.335-336
    • /
    • 2017
  • 본 논문에서는 대용량 배터리 모듈이 병렬 연결되어 있는 에너지 저장장치 시스템의 초기 기동 조건시 투입 초기의 전류를 추정할 수 있는 방법을 제시한다. 제안된 방법은 배터리 모듈을 구성하고 있는 리튬 배터리 모듈의 단자 전압 및 배터리 모듈 저항 데이터를 이용하여 병렬 연결하고자 하는 배터리의 전류를 예측하는 방법으로써 배터리 모듈의 기동 투입 가능여부 등 온 오프 시퀀스 로직에 적용할 수 있다.

  • PDF

5kWh급 플라이휠 에너지 저장장치용 초고속 전동발전기의 설계 및 특성해석 (Design and Analysis of High Speed Motor/Generator for 5kWh Flywheel Energy Storage System)

  • 장석명;조한욱;이성호;류동완
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1051-1053
    • /
    • 2003
  • Flywheel Energy Storage System (FESS) consists of a high-speed flywheel with an integral motor/generator suspended on magnetic bearings and in an evacuated housing. Permanent magnet (PM) machines as the FESS motor/generator are a popular choice. since there are no excitation losses which mean substantial increase in the efficiency. In this paper, the basic design and the steady-state performances of a permanent magnet synchronous high speed motor/generator for FESS are presented.

  • PDF

전력계통 제어용 초전도에너지 저장장치(SMES)의 검토사례 분석과 전력시장에서의 적용방안 (Reassessment of SMES Application Studies and Systematic approach Method under Deregulation)

  • 이근준;윤용범;황시돌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.54-56
    • /
    • 2003
  • With the advancement of superconductor materials, especially in HTC YBCO(Gen II), the feasibility of SMES in power systems become much higher than previous days application[1]. Also, with the de-regulation of electricity market, it is indispensable to have a proper estimation of power quality index and power quality cost calcluation mechanism to stabilize highly industrialized society and to vitalize the investment for electric power system. This paper suggests a comprehensive algorithm[2] to determine the policy of SMES investment with the PQ Indices[3] based on aggregated load CBEMA curve reflecting the voltage characteristics such as volatge sags and interruptions which make electric load in unstable operation.

  • PDF