• Title/Summary/Keyword: 에너지 부가

Search Result 3,205, Processing Time 0.033 seconds

Reducing the Test Time for Chemical/Mechanical Durability of Polymer Electrolyte Membrane Fuel Cells (고분자연료전지의 화학적/기계적 내구성 평가 시간 단축)

  • Sohyeong Oh;Donggeun Yoo;Kim Myeonghwan;Park Jiyong;Choi Yeongjin;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.517-522
    • /
    • 2023
  • A chemical/mechanical durability test of polymer membrane evaluation method is used in which air and hydrogen are supplied to the proton exchange membrane fuel cell (PEMFC) and wet/dry is repeated in the open circuit voltage (OCV) state. In this protocol, when wet/dry is repeated, voltage increase/decrease is repeated, resulting in electrode degradation. When the membrane durability is excellent, the number of voltage changes increases and the evaluation is terminated due to electrode degradation, which may cause a problem that the original purpose of membrane durability evaluation cannot be performed. In this study, the same protocol as the department of energy (DOE) was used, but oxygen was used instead of air as the cathode gas, and the wet/dry time and flow rate were also increased to increase the chemical/mechanical degradation rate of the membrane, thereby shortening the durability evaluation time of the membrane to improve these problems. The durability test of the Nafion 211 membrane electrode assembly (MEA) was completed after 2,300 cycles by increasing the acceleration by 2.6 times using oxygen instead of air. This protocol also accelerated degradation of the membrane and accelerated degradation of the electrode catalyst, which also had the advantage of simultaneously evaluating the durability of the membrane and the electrode.

Review on Rock-Mechanical Models and Numerical Analyses for the Evaluation on Mechanical Stability of Rockmass as a Natural Barriar (천연방벽 장기 안정성 평가를 위한 암반역학적 모델 고찰 및 수치해석 검토)

  • Myung Kyu Song;Tae Young Ko;Sean S. W., Lee;Kunchai Lee;Byungchan Kim;Jaehoon Jung;Yongjin Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.445-471
    • /
    • 2023
  • Long-term safety over millennia is the top priority consideration in the construction of disposal sites. However, ensuring the mechanical stability of deep geological repositories for spent fuel, a.k.a. radwaste, disposal during construction and operation is also crucial for safe operation of the repository. Imposing restrictions or limitations on tunnel support and lining materials such as shotcrete, concrete, grouting, which might compromise the sealing performance of backfill and buffer materials which are essential elements for the long-term safety of disposal sites, presents a highly challenging task for rock engineers and tunnelling experts. In this study, as part of an extensive exploration to aid in the proper selection of disposal sites, the anticipation of constructing a deep geological repository at a depth of 500 meters in an unknown state has been carried out. Through a review of 2D and 3D numerical analyses, the study aimed to explore the range of properties that ensure stability. Preliminary findings identified the potential range of rock properties that secure the stability of central and disposal tunnels, while the stability of the vertical tunnel network was confirmed through 3D analysis, outlining fundamental rock conditions necessary for the construction of disposal sites.

Correlation Analysis of Cutter Acting Force and Temperature During the Linear Cutting Test Accompanied by Infrared Thermography (선형절삭시험과 적외선 열화상 측정을 통한 픽커터 작용력과 발생 온도의 상관관계 분석)

  • Soo-Ho Chang;Tae-Ho Kang;Chulho Lee;Hoyoung Jeong;Soon-Wook Choi
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.519-533
    • /
    • 2023
  • In this study, the linear cutting tests of pick cutters were carried out on a granitic rock with the average compressive strength over 100 MPa. From the tests, the correlation between the cutter acting force and the temperature measured by infrared thermal imaging camera during rock cutting was analyzed. In every experimental condition, the maximum temperature was measured at the rock surface where the chipping occurred, and the temperature generated in the rock was closely correlated with the cutter acting force. On the other hand, the temperature of a pick cutter increased up to only 36℃ above the ambient temperature, and the correlation with the cutter force was not obvious. This can be attributed to the short cutting distance under laboratory conditions and the high thermal conductivity of the tungsten carbide inserts. However, the relatively high temperature of the tungsten carbide inserts was found to be maintained. Therefore, it is recommended that a reinforcement between the insert and the head of a pick cutter or the quality improvement of silvering brazing in the production of a cutter is necessary to maintain the high cutting performance of a pick cutter.

A Research on Applicability of Drone Photogrammetry for Dam Safety Inspection (드론 Photogrammetry 기반 댐 시설물 안전점검 적용성 연구)

  • DongSoon Park;Jin-Il Yu;Hojun You
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.30-39
    • /
    • 2023
  • Large dams, which are critical infrastructures for disaster prevention, are exposed to various risks such as aging, floods, and earthquakes. Better dam safety inspection and diagnosis using digital transformation technologies are needed. Traditional visual inspection methods by human inspectors have several limitations, including many inaccessible areas, danger of working at heights, and know-how based subjective inspections. In this study, drone photogrammetry was performed on two large dams to evaluate the applicability of digital data-based dam safety inspection and propose a data management methodology for continuous use. High-quality 3D digital models with GSD (ground sampling distance) within 2.5 cm/pixel were generated by flat double grid missions and manual photography methods, despite reservoir water surface and electromagnetic interferences, and severe altitude differences ranging from 42 m to 99.9 m of dam heights. Geometry profiles of the as-built conditions were easily extracted from the generated 3D mesh models, orthomosaic images, and digital surface models. The effectiveness of monitoring dam deformation by photogrammetry was confirmed. Cracks and deterioration of dam concrete structures, such as spillways and intake towers, were detected and visualized efficiently using the digital 3D models. This can be used for safe inspection of inaccessible areas and avoiding risky tasks at heights. Furthermore, a methodology for mapping the inspection result onto the 3D digital model and structuring a relational database for managing deterioration information history was proposed. As a result of measuring the labor and time required for safety inspection at the SYG Dam spillway, the drone photogrammetry method was found to have a 48% productivity improvement effect compared to the conventional manpower visual inspection method. The drone photogrammetry-based dam safety inspection is considered very effective in improving work productivity and data reliability.

Electrical Properties of 0.77(Bi1/2Na1/2)TiO3-0.23SrTiO3 (BNST23)/PVDF-TrFE Composites (스마트 페인트 센서용 0.77(Bi1/2Na1/2)TiO3-0.23SrTiO3 (BNST23)/PVDF-TrFE 복합소재 제조 및 전기적 특성에 관한 연구)

  • Sung Jae Hyoung;Eun Seo Kang;Yubin Kang;Chae Ryeong Kim;Chang Won Ahn;Byeong Woo Kim;Jae-Shin Lee;Hyoung-Su Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.433-438
    • /
    • 2024
  • Piezoelectric ceramics play an important role in various electronic applications. However, traditional ceramics are difficult to be used in some complicated structures, due to their low flexibility and high brittleness. To solve this problem, this study prepared and investigated ceramic/polymer composites that can utilize a good flexibility of polymers. Polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) and 0.77(Bi1/2Na1/2)TiO3-0.23SrTiO3 (BNST23) ceramics were selected to fabricate the composites. Ceramic/polymer composites were prepared using various volume fractions of BNST23 ceramics. The distribution of piezoceramic particles in BNST23/PVDF-TrFE composites was investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The dielectric and piezoelectric properties of the composites were significantly influenced by the volume fraction of the piezoelectric ceramics. As a result, the highest piezoelectric constant (d33) of 56 pC/N was obtained in a composites with 70% volume fraction of BNST23 ceramics. Accordingly, it is expected that BNST23/PVDF-TrFE composites can be applied to various sensor applications.

Fabrication of Silica Nanoparticles by Recycling EMC Waste from Semiconductor Molding Process and Its Application to CMP Slurry (반도체 몰딩 공정에서 발생하는 EMC 폐기물의 재활용을 통한 실리카 나노입자의 제조 및 반도체용 CMP 슬러리로의 응용)

  • Ha-Yeong Kim;Yeon-Ryong Chu;Gyu-Sik Park;Jisu Lim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • In this study, EMC(Epoxy molding compound) waste from the semiconductor molding process is recycled and synthesized into silica nanoparticles, which are then applied as abrasive materials contains CMP(Chemical mechanical polishing) slurry. Specifically, silanol precursor is extracted from EMC waste according to the ultra-sonication method, which provides heat and energy, using ammonia solution as an etchant. By employing as-extracted silanol via a facile sol-gel process, uniform silica nanoparticles(e-SiO2, experimentally synthesized SiO2) with a size of ca. 100nm are successfully synthesized. Through physical and chemical analysis, it was confirmed that e-SiO2 has similar properties compared to commercially available SiO2(c-SiO2, commercially SiO2). For practical CMP applications, CMP slurry is prepared using e-SiO2 as an abrasive and tested by polishing a semiconductor chip. As a result, the scratches that are roughly on the surface of the chip are successfully removed and turned into a smooth surface. Hence, the results present a recycling method of EMC waste into silica nanoparticles and the application to high-quality CMP slurry for the polishing process in semiconductor packaging.

Importance of the Mixotrophic Ciliate Myrionecta rubra in Marine Ecosystems (해양 생태계 내에서 혼합영양 섬모류 Myrionecta rubra의 중요성)

  • Myung, Geum-Og;Kim, Hyung-Seop;Jang, Keon-Gang;Park, Jong-Woo;Yih, Won-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.178-185
    • /
    • 2007
  • Myrionecta rubra Jankowski 1976(=Mesodinium rubrum Lohmann 1908), a mixotrophic ciliate, is very common and often causes recurrent red tides in diverse marine environments. Since the report on the first laboratory strain of this species in 2000, papers on its novel ecological role and evolutionary importance have been high lighted. This review paper is prepared to promote the de novo recognition M. rubra as a marine mixotrophic species. M. rubra is a ciliate which is able to photosynthesize using plastids originated from cryptophyte (including Teleaulax sp. and Geminigera sp.) prey cells (i.e. kleptoplastidic ciliate). Recently, novel bacterivory of M. rubra was firstly reported. Thus, the nutritional modes of M. rubra include photosynthesis, bacterivory, and algivory. In turn, M. rubra was reported as the prey species of metazoan predators such as calanoid copepods, mysids, larvae of ctenophore and anchovy, and spats of bivalves. In addition, it was reported that dinoflagellate Dinophysis causing diarrhetic shellfish poisoning is one among the predators of M. rubra. Thus, M. rubra, a marine mixotrophic ciliate, may play a pivotal role as a common linking ciliate for the flow of energy and organic material in pelagic food webs.

An Analysis on the Value Chain and the Value System of the Korean Wind Power Industry (한국 풍력산업의 가치사슬 및 가치시스템 분석)

  • Ryu, Jae-Ho;Choi, Ta-Gwan;Park, Jung-Gu
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.46-57
    • /
    • 2014
  • This study analyzes whether the value-added structure of Korean wind power industry exhibits a virtuous cycle through the value chain(VC) within wind power firms and the value system(VS) among the wind power industries, using a regression analysis based on a survey about Korean wind power companies. According to the VC, the government's R&D support is analyzed to have contributed to an increase in the R&D investments of the wind power companies. An increase in corporates' R&D investments has led to an increase in corporates' R&D outputs, and in turn, induced a remarkable increase in the amounts of production. But an increase in production has not led to a decrease in the costs of production, not resulting in an increase in profit rates per sales amount. In addition, while an increase in profit rates is analyzed to have contributed to an increase in production, this did not induce further investments in corporate's R&D. The virtuous cycle of the value chain in Korean wind power firms is, therefore, analyzed to be weak. Next, the VS is analyzed by dividing the whole chain into the system group including rotor blades, gear boxes, and power generators, and the structure group, such as towers. Two groups are analyzed to have mutually positive effects in the processes of the government's support for corporates' R&D, corporates' investment in R&D, R&D outputs, and profit rates per sales amount. Such mutual positive effects are, however, not found in the processes of the amounts of production and the costs of production. These results demonstrates that the value system of Korean wind power industry is not completed. This study has a policy implication to need further efforts to create the virtuous cycle in the VC and VS of Korean wind power industry.

A Study on The Virtuous Cycle of The Value Chain and Value System in Korean Photovoltaic Industry (한국 태양광산업의 가치사슬과 가치시스템 선순환 구조 분석)

  • Park, Sung-Hwan;Park, Min-Hyug;Park, Jung-Gu
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.21-32
    • /
    • 2014
  • This study has analyzed whether the virtuous cycle of value-added between the processes within the company has formed and whether the virtuous ecosystem between the processes within the industry has been built through the analysis of value chain(VC) and value system(VS) targeting the Korean photovoltaic companies. For a study method, after conducting a survey on the companies, a regression analysis was performed on the causal relationship between the process within the VC and VS. Based on the results of the analysis, for the VC of the Korean photovoltaic industry, an increase in the R&D support from the government has led to the increase in the investment of R&D for the related industry, and the increase in the investment of R&D has contributed to the increase in the growth of its productivity, and the growth in the productivity of R&D has influenced the increase in the production of solar products. In addition, the reduction of photovoltaic production cost for the company has influenced the increase of recurring profit margin compared to the sales. However it was shown that the increase in the company's production volume does not contribute to the reduction of production cost. Meanwhile, the increase in recurring profit margin compared to the sales were influencing the increase in the production volume but it was shown that the increase in the company's investment of R&D was not a contributing factor thus it was not included in the virtuous cycle. It was analyzed that the VS was shown not to influence all other processes within the industry except for the module companies where the increase in the recurring profit margin compared to the sales was influenced by the increase in the recurring profit margin compared to the sales of solar cell companies. This shows that the virtuous industrial ecosystem which should be made under the mutual cooperation by the ingot, wafer, solar cell, module and system companies are yet incomplete.

Effects of Scatter Correction on the Assessment of Myocardial Perfusion and Left Ventricular Function by gated Tc-99m Myocardial SPECT (게이트 Tc-99m 심근관류 SPECT에서 산란보정이 심근관류 및 좌심실기능평가에 미치는 영향)

  • Jeong, Hwan-Jeong;Son, Hye-Kyung;Bom, Hee-Seung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.1
    • /
    • pp.33-42
    • /
    • 2001
  • Purpose: The purpose of this study was to evaluate the effect of scatter correction on the assessment of myocardial perfusion and left ventricular function by gated Tc-99m myocardial SPECT. Materials and Methods: Subjects were 11 normal volunteers, 20 patients with non-cardiac chest pain and 13 patients with coronary artery diseases. We classified above 3 groups into normal and diseased groups. Scatter correction was done using dual-energy-window scatter correction method (DEW-SC). We compared acquired counts, image contrast, corrected maximum relative counts, indices of left ventricular function, extent and severity of perfusion defects calculated by 'CEqual program' between scatter non-corrected and corrected images. Results: Scatter corrected studios was lower in counts by $18{\pm}3%$ than uncorrected studies, but image contrast were improved in all cases. Scatter correction using DEW-SC took 3 minutes to complete, and 512 kB memory to store. There were no significant differences among indices of left ventricular function between scatter non-corrected and corrected images. Although extents of perfusion defects were not significantly different, severity was severer in scatter corrected images. Conclusion: Scatter correction using DEW-SC is simple to do, and improves image contrast without changing other indices of myocardial perfusion and function.

  • PDF