• Title/Summary/Keyword: 업셋압력

Search Result 17, Processing Time 0.021 seconds

Mechanical Properties of Friction Welded SM 45C-SF 45 Joints for Automobile Reverse Idle Gear Shaft Applications (자동차 후진기어용 축재(SM 45C-SF 45)의 이종마찰용접 특성)

  • Kong, Yu-Sik;Yun, Seong-Pil;Kim, Seon-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.85-90
    • /
    • 2010
  • Friction welding is a common practice to join axially symmetrical parts for automobile industry applications. The shaft for automobile reverse idle gear is generally produced by forging steel, SF 45. This method is not so good because of high cost of material and production. In this study, in order to investigate the possibility of application of SM 45C to SF 45 dissimilar friction welding, the dissimilar friction welded joints were performed using 20 mm diameter solid bar in forging steel(SF 45) to carbon steel(SM 45C). The optimal friction welding parameters were selected to ensure reliable quality welds on the basis of visual examination, tensile test, micro-Virkers hardness surveys of the bond of area and optical microstructure investigations for welded joint parts. Finally, post weld heat treatment(PWHT) of the high-frequency induction hardening was performed for the friction welded specimens under the optimal welding conditions. And then, the mechanical properties were compared for as-welded and PWHT in SM 45C to SF 45.

A Study on the Relationship between Dissimilar Metals Friction Welded Joints Strength Properties and Ultrasonic Reflection Coefficients (이종재 마찰용접부 강도특성과 초음파 반사계수와의 상관성에 관한 연구)

  • S. K. Oh;D. J. Kim;S. D. Han
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.34-34
    • /
    • 1987
  • Friction welding has emerged as a reliable process for high-production commercial application with significant economic and technical advantages. But nondestructive test in friction weld was not clearly developed. Therefore the experimental verification is necessary in order to understand the characteristics of the pulse echo effects according to various change in welding conditions. This paper presents a new attempt to detect the bond strength of friction welds by ultrasonic. Instead of looking for a flaw or cracks at the interface, the new approach evaluates the coefficient by reflection which provides a single quantitative indicator involving the acoustic energy reflected at the interface. The objective of this study is to find the relationship between the reflection coefficients and the weld strength. Results of the bar-to-bar friction welding of aluminum to copper and stainless steel and such relationship investigation are presented and interpreted.

A Study on the Relationship between Dissimilar Metals Friction Welded Joints Strength Properties and Ultrasonic Reflection Coefficients (이종재 마찰용접부 강도특성과 초음파 반사계수와의 상관성에 관한 연구)

  • O, Se-Gyu;Kim, Dong-Jo;Han, Sang-Deok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.80-85
    • /
    • 1987
  • Friction welding has emerged as a reliable process for high-production commercial application with significant economic and technical advantages. But nondestructive test in friction weld was not clearly developed. Therefore the experimental verification is necessary in order to understand the characteristics of the pulse echo effects according to various change in welding conditions. This paper presents a new attempt to detect the bond strength of friction welds by ultrasonic. Instead of looking for a flaw or cracks at the interface, the new approach evaluates the coefficient by reflection which provides a single quantitative indicator involving the acoustic energy reflected at the interface. The objective of this study is to find the relationship between the reflection coefficients and the weld strength. Results of the bar-to-bar friction welding of aluminum to copper and stainless steel and such relationship investigation are presented and interpreted.

  • PDF

Study on the Frition Welding Characteristics of Oxygen Free High Conductivity Copper (무산소동의 마찰 용접 특성에 관한 연구)

  • 정호신;소전강
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.10-15
    • /
    • 1997
  • Copper and its alloy had been used widely because of its pronouncing characteristics on their high thermal and electrical conductivity. Various fusion welding methods, such as SMAW, SAW, GTAW, GMAW, Electroslag welding amd so on are applied to weld copper and its alloy. But fusion welding of copper has so many welding problems. THe most serious problems were poor penetration amd high thermal contration stress due to its high thermal conductivity and porosity could be formed by rapid cooling rate of fusion welding. In order to avoid such fusion welding problems, preheating, peering and heat treatment must be applied to obtain sound weld joint of copper. But preheating induce another welding problem such as grain coarsening of weld heat affected zone. This grain coarsening reduces ductility and strength of weld joint. In this view of point, friction welding of copper is triedm to obtain sound weld joint of copper by reducing metallurgical problems. This study introduced new concept of heat input for evaluating the friction weldability of copper. As a result, weldability of copper could be evaluated by this new concept of heat input.

  • PDF

A Study on the Mechanical Properties of the Friction Welding with Solid Shaft of SM45C (SM45C 중실축의 마찰용접 기계적 특성에 관한 연구)

  • Koo, Keon Seop
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.932-937
    • /
    • 2012
  • In the presented study, SM45C carbon steel parts were joined by friction welding. The welding process was carried out under optimized conditions using statistical approach. The study of SM45C is conducted with various combinations of process parameters. Parameter optimization, microstructure and mechanical property correlation are the major contribution of the study. The welded joints were produced by varying spindle revolution speed, friction pressure, upset pressure and burn-off length. Tension tests were applied to welded parts to obtain the strength of the joints. Fracturs properties were additionally obtained experimentally under fluctuated tensile loads. Microstructures using microphotographs were examined in the weld interface and weld region and heat affected zone and base metal and flash zone of welded parts. Finally, Hardness variations in welding zone and base metal were also obtained. Through these tests, the optimum conditions of parameters for ${\phi}20$ SM45C in friction welding were obtained when the friction spindle revolution was 1,950 rpm, the friction pressures was 30 MPs, upset pressures was 50 MPs.

The behavior of strength on friction welding of dissimilar steels by various heating time : in case of SM45C and SUS304 materials (이종강의 마찰압접시 압접시간 변화에 따른 강도거동-SM45C와 SUS304재의 경우)

  • 박명과;박명과
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.762-771
    • /
    • 1987
  • Friction welding is a fusion process in which the necessary heat is generated by clamping one of the two pieces to be welded in a stationary chuck and rotating the other at high speed with an axially applied load. It is essentially a variation of the pressure welding process but utilizes a novel heating method. In addition to the foregoing advantages, it has also been reported excellent for welding dissimilar materials. Therefore, this study reported on investigating the strength behavior for the frictionally welded domestic structural steel SM45C and SUS304. The results obtained by the experiments are as follows. (1) The highest tensile strength of the best friction welded specimen (B4) is about 3% lower than that of SM-45C base metal, and 9% lower than that of SUS304 base metal. The heat treated specimens (850.deg.C 1hr A.C) have almost same value of tensile strength. (2) The strain of SM45C base metal is 27.3% and that of SUS304 is 42%, that of the best friction welded specimen (B4) appeared as 11.9% which is about 50% lower than the base metal, so, this same phenomenon apeared in all the other welding conditions. (3) The bending strength of SM45C base metal is 123kgf/mm$^{2}$ and that of SUS304 is 127kgf/mm$^{2}$. The best specimen (B4) appeared as 121kgf/mm$^{2}$ which is almost same bending strength for both base metals. (4) The friction welded condition involving maximum strength is determined by P$_{1}$=8kgf/mm$_{2}$, P$_{2}$=22kgf/mm$_{2}$, T$_{1}$=10sec, T$_{2}$=2sec, and amount of upset 7.6mm. (5) The interface of two dissimilar materials are mixed strongly, and welded zone is about 1.03mm and also the heat affected zone is about 2.36mm at SM45C while about 1.85mm at SUS304, therefore the welded zone and heat affected zone are very narrow to compare with those of the other welding materials.

Friction Welding Analysis of Welding Part Shape with Flow Gallery Considered Fluid Flow (유체 유동을 고려한 유동부를 갖는 용접부 형상의 마찰용접 해석)

  • Yeom, Sung-Ho;Kim, Bum-Nyun;Hong, Sung-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.7-12
    • /
    • 2007
  • Friction welding is a welding method to use frictional heat of a couple of materials. In this paper object is that design the welding part shape with the flow gallery part which there is no effect in flow. Decided the welding part design parameter and doing the friction welding analysis used the rigid-plastic FEM program DEFORM-2D. To do friction welding analysis must input necessary flow stress data, friction coefficient by temperature change, upset pressure and Revolution per minute etc. According to analysis result, it decided the optimal shape of welding part with no effect in flow.