본 논문에서는 딥러닝 기반 얼굴 인식 알고리즘에 대해 살펴보고, 이를 청각장애인용 방송에서 화자를 식별하고 감정 표현 자막을 표출하기 위한 배우 얼굴 인식 기술에 적용하고자 한다. 우선, 배우 얼굴 인식을 위한 방안으로 원샷 학습 기반의 딥러닝 얼굴 인식 알고리즘인 ResNet-50 기반 VGGFace2 모델의 구성에 대해 이해하고, 이러한 모델을 기반으로 다양한 전처리 방식을 적용하여 정확도를 측정함으로써 실제 청각장애인용 방송에서 배우 얼굴을 인식하기 위한 방안에 대해 모색한다.
차이가 나는 물체를 구별하는 물체인식과 달리, 얼굴인식은 유사한 패턴을 가진 얼굴의 Identity를 구별한다. 이에 따라 LBP, HOG, Gabor과 같은 특징 추출 알고리즘이 딥러닝 기반으로 대체되고 있다. 딥 러닝 기술을 활용하여 머신러닝으로 얼굴을 식별할 수 있는 기술이 발전하면서 다양한 분야에서 얼굴인식 기술이 활용되고 있다. 특히, 금융 거래 외에도 사용자 식별이 필요한 다양한 오프라인 환경에서 활용되어 세밀하고 개인에 적합한 서비스가 제공될 수 있다. 얼굴 인식 기술은 스마트 미러와 같은 장치를 통해 손쉽게 사용자 인증을 하고, 식별이 된 사용자에게 서비스를 제공할 수 있는 기술로 발전할 수 있다. 본 논문에서는 사용자 인증의 다양한 기법 중에서 얼굴인식 기술에 대한 조사 및 파이썬으로 작성된 얼굴인식 사례 소스 분석과 얼굴인식 기술을 활용한 다양한 서비스의 가능성을 제시하고자 한다.
본 논문에서는 기존의 문제점인 얼굴 움직임이 있을 시 시선 식별이 어려운 점과 사용자에 따른 교정작업이 필요하다는 점을 해결하고자 새로운 시선 식별 시스템과 얼굴인식에 필요한 GRNN(: Generalized Regression Neural Network) 알고리즘을 제안한다. Kalman필터를 사용하여 현재 머리의 위치정보를 이용하여 미래위치를 추정하였고 얼굴의 진위 여부를 판단하기 위해서 얼굴의 특징요소를 구조적 정보와 비교적 처리시간이 빠른 수평, 수직 히스토그램 분석법을 이용하여 얼굴의 요소를 검출한다. 그리고 적외선 조명기를 구성하여 밝은 동공효과를 얻어 동공을 실시간으로 검출, 추적하였고 동공-글린트 벡터를 추출한다.
본 논문에서는 아파트 공동현관의 출입통제에 적합한 얼굴인식 방법을 제안한다. 제안 방법은 기존의 얼굴인식 방식과는 다르게 별도의 수동 얼굴 등록 과정을 거치지 않는다. 건물에 있는 인물(예 : 거주자)이 공동현관문을 통해 외출하면 외출 시점에 촬영된 영상에서 자동 추출된 얼굴데이터(얼굴영상 및 특징)를 거주자 데이터베이스에 등록한다. 외출한 인물이 귀가하여 다시 공동현관문을 통해 출입하고자 하면 출입 시점에 촬영된 영상에서 추출된 얼굴데이터를 거주자 데이터베이스에 등록된 얼굴데이터와 대조하여 동일 인물이 식별되는 경우에만 공동현관문을 개방하여 출입을 허용한다. 동일 인물로 매칭된 얼굴데이터는 거주자 데이터베이스에서 바로 삭제되며, 외출할 때마다 새롭게 추출된 최신 얼굴데이터로 등록 갱신된다. 따라서 항상 최신 얼굴 데이터에 기반하여 얼굴 대조가 이루어져 동일인물을 식별하기에 유리하다. 제안 방법에 대해 구현의 용이함을 검증하기 위해 PC 2대와 포털에서 제공하는 클라우드를 활용하여 파이썬 기반의 얼굴인식 기능을 구현하였다. 또한 제안방법의 보안을 강화하기 위한 아이디어를 제시하였다.
상황인식 컴퓨팅 기술은 넓게 보면 유비쿼터스 컴퓨팅 기술의 일부분으로 볼 수 있다. 그러나 상황인식 컴퓨팅 기술의 적용측면에 대한 접근 방법이 유비쿼터스 컴퓨팅과는 다르다고 할 수 있다. 지금까지 연구된 상황인식 컴퓨팅 기술은 지정된 공간에서 상황을 발생시키는 객체를 식별하는 일과 식별된 객체가 발생하는 상황의 인식에 주된 초점을 두고 있다. 또한, 상황정보로는 객체의 위치 정보만을 주로 사용하고 있다. 그러나 본 논문에서는 객체의 얼굴표정을 상황정보로 사용하여 감성을 인식할 수 있는 상황인식 미들웨어로서 CM-FEIP의 구조를 제안한다. CM-FEIP의 가상공간 모델링은 상황 모델링과 서비스 모델링으로 구성된다. 또한, 얼굴표정의 인식기술을 기반으로 온톨로지를 구축하여 객체의 감성을 인식한다. 객체의 얼굴표정을 상황정보로 사용하고, 무표정일 경우에는 여러 가지 환경정보(온도, 습도, 날씨 등)를 이용한다. 온톨로지를 구축하기 위하여 OWL 언어를 사용하여 객체의 감성을 표현하고, 감성추론 엔진은 Jena를 사용한다.
본 논문에서는 실시간 시선 식별을 위한 능동적 적외선 조명을 기반으로 한 컴퓨터 비전 시스템을 제안하고자 한다. 현존하는 대다수의 시선 식별 방법은 고정된 얼굴에서만 원활하게 동작하고 개개인에 대한 교정 절차를 필요로 한다. 그러므로 본 논문에서는 교정 작업 없이 얼굴 움직임이 있는 경우에도 견실하고 정확하게 동작하는 시선 식별 시스템을 제안하고 있다. 제안된 시스템은 추출된 변수로부터 시선을 스크린 좌표로 매핑하기 위해 GRNN을 이용하였다. 동공을 추적하여 GRNN을 사용함으로서, 시선 매핑에 분석적 기능이나 얼굴 움직임에 대한 계산이 필요 없을 뿐 아니라 다른 개개인에 대하여 학습과정에서 매핑 기능을 일반화 할 수 있었다. 시선 예측 정확도를 개선하고자 계층적 식별을 제안함으로써 오분류를 줄일 수 있었고, 공간 시선 해상도는 스크린에서 1m 정도 떨어진 거리에서 수평으로 10cm, 수직으로 약 13cm, 즉 수평으로 8도 수직으로 5도 이었다. 실험 결과, 재식별 하였을 경우 1차 시선 식별시 84%보다 약 9% 정도 정확성이 향상되어 93%를 나타냄으로써 제안된 시스템의 유효성을 증명하였다.
본 논문에서는 실시간 시선 식별을 위한 능동적 적외선 조명을 기반으로 한 컴퓨터 비전 시스템을 제안 하고자 한다. 현존하는 대다수의 시선 식별 방법은 고정된 얼굴에서만 원활하게 동작하고 개개인에 대한 교정 절차를 필요로 한다. 그러므로 본 논문에서는 교정 작업 없이 얼굴 움직임이 있는 경우에도 견실하고 정확하게 동작하는 시선 식별 시스템을 제안하고 있다. 제안된 시스템은 추출된 변수로부터 시선을 스크린 좌표로 매핑하기 위해 GRNN을 이용하였다. 동공을 추적하여 GRNN을 사용함으로서, 시선 매핑에 분석적 기능이나 얼굴 움직임에 대한 계산이 필요 없을 뿐 아니라 다른 개개인에 대하여 학습과정에서 매핑 기능을 일반화 할 수 있었다. 시선 예측 정확도를 개선하고자 계층적 식별을 제안함으로써 오분류를 줄일 수 있었고, 공간 시선 해상도는 스크린에서 1m 정도 떨어진 거리에서 수평으로 10cm, 수직으로 약 13cm, 즉 수평으로 8도 수직으로 5도 이었다. 실험 결과, 재식별 하였을 경우 1차 시선 식별시 84%보다 약 9% 정도 정확성이 향상되어 93%를 나타냄으로써 제안된 시스템의 유효성을 증명하였다.
본 논문에서는 실시간 시선 식별을 위한 능동적 적외선 조명을 기반으로 한 컴퓨터 비전 시스템을 제안하고자 한다. 현존하는 대다수의 시선 식별 방법은 고정된 얼굴에서만 원활하게 동작하고 개개인에 대한 교정 절차를 필요로 한다. 그러므로 본 논문에서는 교정 작업 없이 얼굴 움직임이 있는 경우에도 견실하고 정화하게 동작하는 시선 식별 시스템을 제안하고 있다. 제안된 시스템은 추출된 변수로부터 시선을 스크린 좌표로 매핑하기 위해 GRNN을 이용하였다. GRNN을 사용함으로서, 시선 매핑에 분석적 기능이나 얼굴 움직임에 대한 계산이 필요 없을 뿐 아니라 다른 개개인에 대하여 학습과정에서 매핑 기능을 일반화 할 수 있었다. 시선 예측 정확도를 개선하고자 계층적 식별을 제안함으로써 오분류를 줄일 수 있었고, 공간 시선 해상도는 스크린에서 Im 정도 떨어진 거리에서 수평으로 10cm, 수직으로 약 13cm, 즉 수평으로 8도 수직으로 5도 이었다 실험 결과, 재식별 하였을 경우 1차 시선 식별시 84$\%$보다 약 9$\%$ 정도 정확성이 향상되어 93%를 나타냄으로써 제안된 시스템의 유효성을 증명하였다.
전자 출결 시스템(Electronic attendance-absence recording system)은 오프라인의 교실 수업 방식에 있어서 혼합 학습(Blended learning)을 위한 중요한 강의 지원 시스템 가운데 하나이다. 그러나 기존의 스마트카드 기반의 전자 출결 시스템은 카드 소유자의 실제 본인 유무를 파악하는 것은 불가능하다. 따라서 본 논문에서는 개인의 얼굴 정보를 자기조직화 신경회로망으로 인식하여 자동으로 해당 교과목의 출석상황을 관리하는 클라이언트-서버 시스템을 개발한다. 클라이언트 시스템은 얼굴 특징추출에 의한 식별파일을 생성하고, 서버 시스템에서는 클라이언트 시스템에서 전송된 식별 파일(ID file)을 분석하여 데이터베이스에 저장된 해당 교과목의 인식 가중치 파일(Recognized weight file)를 이용하여 학생 식별을 수행한다. 본 논문에서 제안하는 얼굴 인식 기반의 출결 관리 시스템은 실제 학급의 다양한 얼굴 영상을 이용하여 CS 환경에서 실험한 결과 92% 이상의 유효성을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.