• Title/Summary/Keyword: 억제인자

Search Result 1,336, Processing Time 0.037 seconds

Induction of c-Jun Expression by Breast Cancer Anti-estrogen Resistance-3 (BCAR3) in Human Breast MCF-12A Cells (정상적인 인간유방상피세포인 MCF-12세포에서 유방암 항에스토젠 내성인자-3 (BCAR3)에 의한 c-Jun 발현 유도 연구)

  • Oh, Myung-Ju;Kim, Ji-Hyun;Jhun, Byung Hak
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1383-1391
    • /
    • 2016
  • Anti-estrogen drugs such as tamoxifen have been used for treating patients with ER-positive, early breast cancer. However, resistance to anti-estrogen treatment is inevitable in most patients. Breast cancer anti-estrogen resistance-3 (BCAR3) has been identified as the protein responsible for the induction of tamoxifen resistance in estrogen-dependent human breast cancer. We have previously reported that BCAR3 regulates the cell cycle progression and the signaling pathway of EGF and insulin leading to DNA synthesis. In this study, we investigated the functional role of BCAR3 in regulating c-Jun transcription in non-tumorigenic human breast epithelial MCF-12A cells. A transient transfection of BCAR3 increased both the mRNA and protein of c-Jun expression, and stable expression of BCAR3 increased c-Jun protein expression. The overexpression of BCAR3 directly activated the promoter of c-jun, AP-1, and SRE but not that of $NF-{\kappa}B$. Furthermore, single-cell microinjection of BCAR3 expression plasmid in the cell cycle-arrested MCF-12A cells induced c-Jun protein expression, and co-injection of dominant negative mutants of Ras, Rac, and Rho suppressed the transcriptional activity of c-Jun in the presence of BCAR3. Furthermore, stable expression of BCAR3 increased the proliferation of MCF-12A cells. The microinjection of inhibitory materials such as anti-BCAR3 antibody and siRNA BCAR3 inhibited EGF-induced c-Jun expression but did not affect IGF-1 induced upregulation of c-Jun. Taken together, we propose that BCAR3 plays a crucial role in c-Jun protein expression and cell proliferation and that small GTPases (e.g., Ras, Rac, and Rho) are required for the BCAR3-mediated activation of c-Jun expression.

Inhibitory Effect of Scopoletin Isolated from Sorbus commixta on TNF-α-Induced Inflammation in Human Vascular Endothelial EA.hy926 Cells through NF-κB Signaling Pathway Suppression (마가목 수피에서 분리한 scopoletin의 EA.hy926 혈관내피세포에서 NF-κB 신호전달을 통한 TNF-α로 유도된 혈관염증 저해 효과)

  • Kang, Hye Ryung;Kim, Hyo Jung;Kim, Bomi;Kim, Sun-Gun;So, Jai-Hyun;Cho, Soo Jeong;Kwon, Hyun Sook
    • Journal of Life Science
    • /
    • v.30 no.4
    • /
    • pp.343-351
    • /
    • 2020
  • Sorbus commixta Hedl. has traditionally been used as a remedy for cough, asthma, and other bronchial disorders. In this study, three major triterpenoids-lupeol, β-sitosterol, and ursolic acid and a coumarin, scopoletin, were isolated from a CHCl3-soluble fragment of the bark of S. commixta. Their structures were identified by spectroscopic analyses, including mass spectrometry (MS), 1D-, and 2D- nuclear magnetic resonance spectroscopy (NMR), as well as by comparing the data with data reported in the literature. Scopoletin was isolated from this plant for the first time. It is a nutraceutical compound contained in many plants that has been reported to exert diverse biological activities, including anti-inflammatory effects. This study examined the inhibitory effect of scopoletin on TNF-α-induced vascular endothelial inflammation. Unlike the marginal impact of other compounds against low-density lipoprotein (LDL) oxidation and vascular endothelial inflammation, scopoletin showed remarkable activity on LDL oxidation (IC50 = 10.2 μM) and exerted vascular anti-inflammatory effects in EA.hy926 human endothelial cells activated by TNF-α. It suppressed the expression of adhesion molecules, such as ICAM-1, VCAM-1, and E-selectin, and blocked the adhesion between THP-1 monocytes and EA. hy926 endothelial cells. It also inhibited TNF-α-induced NF-κB translocation from the cytosol to the nucleus. Moreover, IκBα phosphorylation, which was increased by TNF-α treatment, was reduced after treatment with scopoletin. Thus, scopoletin inhibited TNF-α-induced vascular inflammation in endothelial cells by suppressing the NF-κB signaling pathway. These results demonstrate that owing to its anti-inflammatory activity in the vascular endothelium, scopoletin has the potential to inhibit atherosclerosis development.

The Anti-angiogenic Potential of a Phellodendron amurense Hot Water Extract in Vitro and ex Vivo (in Vitro와 ex vivo에서 황백 온수추출물의 신생혈관 억제효과)

  • Kim, Eok-Cheon;Kim, Seo Ho;Bae, Kiho;Kim, Han Sung;Gelinsky, Michael;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.693-702
    • /
    • 2015
  • Blocking new blood-vessel formation (angiogenesis) is now recognized as a useful approach to the therapeutic treatment of many solid tumors. The best validated approach to date is to target the vascular endothelial growth-factor (VEGF) pathway, a key regulator of angiogenesis. Many natural products and extracts that contain a variety of chemopreventive compounds have been shown to suppress the development of malignancies through their anti-angiogenic properties. Phellodendron amurense, which is widely used in Korean traditional medicine, has been shown to possess antitumor, antimicrobial, and anti-inflammatory properties, among others. The present study investigated the effects of P. amurense hot-water extract (PAHWE) on angiogenesis, a key process in tumor growth, invasion, and metastasis. To investigate PAHWE’s anti-angiogenic properties, this study’s authors performed an analysis of angiogenesis and endothelial-cell proliferation, migration, invasion, and tube formation, as well as zymogram assays and the rat aortic ring-sprouting assay. PAHWE inhibited cell growth, mobility, and vessel formation in response to VEGF in vitro and ex vivo. Furthermore, it reduced VEGF-induced intracellular signaling events, such as the activation of matrix metalloproteinases (MMPs) -2 and -9. These results indicate that PAHWE’s anti-angiogenic properties might lead to the development of potential drugs for treating angiogenesis-associated diseases such as cancer.

Antiadipogenic Activity of Solvent-partitioned Fractions from Limonium tetragonum in 3T3-L1 Preadipocytes (갯질경이 용매분획물의 3T3-L1전지방세포에서의 지방생성억제 효과)

  • Kwon, Myeong Sook;Kim, Jung-Ae;Oh, Jung Hwan;Karadeniz, Fatih;Lee, Jung Im;Seo, Youngwan;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.60-68
    • /
    • 2019
  • Limonium tetragonum, an edible halophyte that grows on salt marshes in Korea, is thought to possess various health benefits (e.g., antioxidant, antitumor, and hepatoprotective). In the present study, different solvent partitioned subfractions, water ($H_2O$), buthanol (n-BuOH), 85% aqueous methanol (85% aq. MeOH), and hexane (n-hexane), from crude extract of L. tetragonum were tested for their ability to prevent adipogenesis in differentiating 3T3-L1 preadipocytes. The treatment of differentiating 3T3-L1 preadipocytes with L. tetragonum subfractions (LTFs) resulted in suppressed adipogenesis and reduced expression of adipogenesis-related transcription factors such as peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$), CCAATT/enhancer-binding protein alpha ($C/EBP{\alpha}$), and sterol regulatory element-binding protein 1c (SREBP-1c) at both mRNA and protein levels. In addition, the LTF treatment notably decreased the levels of phosphorylated p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) of the mitogen-activated protein kinase (MAPK) pathway in association with $PPAR{\gamma}$-linked adipogenesis. Among all the tested LTFs, $H_2O$ and n-hexane were the most effective in lowering lipid accumulation and regulating the adipocyte differentiation via $PPAR{\gamma}$ pathway. Taken together, the results indicated that the $H_2O$ and n-hexane LTFs contain bioactive compounds that may exhibit significant antiadipogenesis activity by downregulation of the $PPAR{\gamma}$ pathway and inactivation of the MAPK signal pathway in 3T3-L1 preadipocytes.

Anti-inflammatory and Antioxidative Effects of Lotus Root Extract in LPS-PG-Stimulated Human Gingival Fibroblast-1 Cells (치주염 원인균 LPS-PG로 유도된 인체 치은섬유아세포에서 연뿌리 추출물에 대한 항염증 및 항산화 효과)

  • Lee, Young-Kyung;Kim, Chul Hwan;Jeong, Dae Won;Lee, Ki Won;Oh, Young Taek;Kim, Jeong Il;Jeong, Jin-Woo
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.565-573
    • /
    • 2022
  • Gingival inflammation is one of the main causes that can be related to various periodontal diseases. Human gingival fibroblast (HGF) is the major constituent in periodontal connective tissue and secretes various inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), upon lipopolysaccharide stimulation. This study is aimed at investigating the anti-inflammatory and antioxidative activities of Lotus Root extract (LRE) in Porphyromonas gingivalis derived lipopolysaccharide (LPS-PG)-stimulated HGF-1 cells. The concentration of NO and PGE2, as well as their responsible enzymes, inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2), was analyzed by Griess reaction, ELISA, and western blot analysis. LPS-PG sharply elevated the production and protein expression of inflammatory mediators, which were significantly attenuated by LRE treatment in a dose-dependent manner. LRE treatment also suppressed activation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response gene 88 (MyD88) and nuclear factor-κB (NF-κB) in LPS-PG-stimulated HGF-1 cells. In addition, one of phase II enzyme, NAD(P)H quinone dehydrogenase (NQO)-1, and its transcription factor, Nuclear factor erythroid 2-related factor 2 (Nrf2), were significantly induced by LRE treatment. Consequently, these results suggest that LRE ameliorates LPS-PG-induced inflammatory responses by attenuating TLR4/MyD88-mediated NF-κB, and activating NQO-1/Nrf2 antioxidant response element signaling pathways in HGF-1 cells.

A Study of the Prognostic Factors in Resected Stage I Non-Small Cell Lung Cancer (제1병기 비소세포폐암 절제례의 예후인자에 대한 연구)

  • 김창수;천수봉;조성래
    • Journal of Chest Surgery
    • /
    • v.31 no.10
    • /
    • pp.973-981
    • /
    • 1998
  • Background: About 30% to 40% of the patients with pathologic stage I non-small cell lung cancer (NSCLC) die within 5 years after complete resection. The identification of poor prognostic factors and the application of additional treatment are very important to improve the survival rate in resected stage I NSCLC. Materials and methods: Sixty-eight(68) patients who had been diagnosed postoperatively between Janury 1989 and December 1995 as having stage I non-small cell lung cancer according to the TNM classification were studied. The postoperative 5-year survival rate was calculated with the Kaplan-Meier method, and clinico- histopathologic factors including age, sex, operative method, type of tumor cell, T factor, grade of the differentiation in a squamous cell carcinoma, invasion of blood vessel and expression of the nm23-H1 protein were investigated and analyzed. Results: The median survival of the entire group of patients was 58$\pm$3 months, with a 5-year survival of 58.9%. In univariate analysis, invasion of blood vessel and poor differentiation of the tumor cell in a squamous cell carcinoma significantly worsened the survival. In multivariate analysis, invasion of blood vessel and grade of the differentiation of the tumor cells in a squamous cell carcinoma remained independent prognostic factors. High expression of the nm23-H1 protein was related to a high postoperative 5-year survival in comparision with low expression of the nm23-H1 pretein (73.0% vs 50.7%), but there was no statistical significance. Conclusions: These results highlight the negative prognostic value of poor differentiation of tumor cells in a squamous cell carcinoma and invasion of blood vessel in stage I non-small cell lung cancer. Also, further studies are necessary to be determined prognostic value of the T factor and expression of the nm23 protein in non-small cell lung cancer.

  • PDF

Biological Function and Structure of Transposable Elements (이동성 유전인자의 구조 및 생물학적 기능)

  • Kim, So-Won;Kim, Woo Ryung;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.1047-1054
    • /
    • 2019
  • Transposable elements (TEs) occupy approximately 45% of the human genome and can enter functional genes randomly. During evolutionary radiation, multiple copies of TEs are produced by duplication events. Those elements contribute to biodiversity and phylogenomics. Most of them are controlled by epigenetic regulation, such as methylation or acetylation. Every species contains their own specific mobile elements, and they are divided into DNA transposons and retrotransposons. Retrotransposons can be divided by the presence of a long terminal repeat (LTR). They show various biological functions, such as promoter, enhancer, exonization, rearrangement, and alternative splicing. Also, they are strongly implicated to genomic instability, causing various diseases. Therefore, they could be used as biomarkers for the diagnosis and prognosis of diseases such as cancers. Recently, it was found that TEs could produce miRNAs, which play roles in gene inhibition through mRNA cleavage or translational repression, binding seed regions of target genes. Studies of TE-derived miRNAs offer a potential for the expression of functional genes. Comparative analyses of different types of miRNAs in various species and tissues could be of interest in the fields of evolution and phylogeny. Those events allow us to understand the importance of TEs in relation to biological roles and various diseases.

Protein Arginine Methyltransferase 5 (PRMT5) Regulates Adipogenesis of 3T3L-1 Cells (단백질 아르기닌 메틸전이효소 5(PRMT5)에 의한 3T3L-1 세포의 지방세포 분화 조절)

  • Jang, Min Jung;Yang, Ji Hye;Kim, Eun-Joo
    • Journal of Life Science
    • /
    • v.28 no.7
    • /
    • pp.765-771
    • /
    • 2018
  • Peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) is a key transcription factor that regulates adipogenesis, and epigenetic control of $PPAR{\gamma}$ is of great interest in obesity-inhibition research. Our previous study showed that CACUL1 (CDK2-associated cullin domain 1) acts as a corepressor that inhibits $PPAR{\gamma}$ transcriptional activity and adipocyte differentiation. Here, we investigated the roles of protein arginine methyltransferase 5 (PRMT5), a novel binding partner of CACUL1, in regulating $PPAR{\gamma}$. The interaction between PRMT5 and CACUL1 was shown by immunoprecipitation assay in vivo and GST pulldown assay in vitro. As shown by luciferase reporter assay, PRMT5 and CACUL1 cooperated to inhibit the transcriptional activity of $PPAR{\gamma}$. The suppressive role of PRMT5 in adipogenesis was examined by Oil Red O staining using 3T3-L1 cells, which stably overexpress or deplete PRMT5. Overexpression of PRMT5 suppresses $PPAR{\gamma}$-mediated adipogenesis, whereas PRMT5 knockdown increases lipid accumulation in 3T3-L1 cells. Consistently, PRMT5 attenuates the expression of Lpl and aP2, the target genes of $PPAR{\gamma}$, as demonstrated by RT-qPCR analysis. Overall, these results suggest that PRMT5 interacts with CACUL1 to impair the transcriptional activity of $PPAR{\gamma}$, leading to the inhibition of adipocyte differentiation. Therefore, the regulation of PRMT5 enzymatic activity may provide a clue to develop an anti-obesity drug.

Effect of sonicates of Treponema denticola on osteoblast differentiation (Treponema denticola 분쇄액에 의한 조골세포분화 억제효과)

  • Choi, Bong-Kyu;Kang, Jung-Hwa;Jin, Seung-Wook;Ohk, Seung-Ho;Lee, Syung-Il;Yoo, Yun-Jung
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.1
    • /
    • pp.79-89
    • /
    • 2003
  • 치주질환은 세균감염에 의해 치조골이 파괴되는 염증성질환으로서 치아상실의 주된 원인이다. Treponema denticola는 성인성 치주염의 병소에서 자주 발견되는 세균으로서 부착능 및 단백분해효소생성능과 같은 독성 인자가 밝혀져 치주조직 파괴에 있어서 중요성이 강조되어 왔다. 골개조는 조골세포의 골형성및 파골세포에 의한 골흡수의 균형에 의하여 유지되며 치주염시 야기되는 치조골파괴는 조골세포 및 파골세포 기능의 불균형에 의하여 야기되는 것으로 설명되고 있다. 골세포에 대한 영향으로서 T. denticola는 파골세포의 형성을 촉진시키는 것으로 보고되었으나 조골세포에 대한 영향은 아직 밝혀져 있지 않다. 따라서 본 연구에서는 T. denticola가 골형성에 미치는 영향을 알아보고자 마우스의 두개골세포로부터 조골세포를 분리한 후 T. denticola분쇄액으로 처리하여 본 세균이 조골세포의 alkaline phosphatase(ALPase) 활성, 석회화결절 형성 및 Prostaglandin $E_2\;(PGE_2)$ 생성에 미치는 영향을 평가하였다. ALPase활성은 p-nitrophenylphosphate분해능, 석회화결절형성은 Von Kossa 염색법, 그리고 PGE2의 농도는 효소면역측정법으로 측정하였다. T. denticola분쇄액 (2.5 ug/ml)은 마우스 두개골세포의 ALPase활성을 억제하였으며 석회화결절의 형성을 감소시켰다. 또한 동일한 농도의 균분쇄액은 마우스 두개골세포의 $PGE_2$ 생산을 증가시켰다. 균분쇄액과 prostaglandin의 합성억제제인 indomethacin으로 세포를 동시에 처리한 경우 T .denticola분쇄액에 의한 $PGE_2$의 생산은 감소되었으나, ALPase의 활성억제에는 변화가 없었다. 균분쇄액을 열처리하여 마우스 두개골세포에 처리하였을 때에도 ALPase의 활성이 억제되는 것에는 변함이 없었다. 이러한 결과는 T. denticola의 구성성분 중 열에 안정한 물질이 prostaglandin과 무관한 경로를 통해 조골세포의 분화를 억제함을 시사하며 이와 같은 T. denticola에 의한 골형성억제가 치주염시 야기되는 치조골 파괴에 관여할 수 있을 것으로 생각된다.

Influence of the Substrate and Inhibitors Related to Phosphatidylinositol Metabolism in the Maturation Processes of Porcine Oocytes (돼지 난모세포의 성숙과정에서 Phosphatidylinositol 대사의 기질 및 억제인자의 영향)

  • 강승률;양보석;조인철;이성수;정진관
    • Journal of Embryo Transfer
    • /
    • v.16 no.2
    • /
    • pp.91-98
    • /
    • 2001
  • We evaluated the effects of the substrate and inhibitors related to phosphatidylinositol metabolism on in vitro maturation and fertilization of porcine oocytes. Cumulus-oocyte complexes were cultured in mTLP-PVA medium supplemented with or without inositol (250 mM) fur 46h. Subsequently, these oocytes were inseminated with fresh boar semen in mTALP-PVA medium for 6h. At 6h after insemination, oocytes were cultured for further 12 h in TCM-199 supplemented with 10% FBS (fetal bovine serum). The higher percentage of oocytes in inositol-supplemented medium reached metaphase of the second meiotic division compared to those in control (81.4% vs. 67.3%; P<0.()5). following 18 h of insemination, more number of male pronuclei were formed in the oocytes matured in inositol-supplemented medium than in those of control experiment (42.0% vs. 27.3%; P<0.05). When oocytes were cultured in medium with 10mM LiCl (chloride lithium) or 0.5mM dbcAMP (dibutyryl cyclic adenosine monophosphate) to determine the role of inositol on the maturation of oocytes, these two drugs inhibited the meiotic division of oocytes (P<0.05). However, addition of inositol to the culture medium did overcome the inhibitory effect of these drugs on the oocyte maturation. DbcAMP and verapamil supplemented synergistically arrested the meiotic division of oocytes. Addition of verapamil did not inhibit germinal vesicle breakdown, but it severly inhibited the second meiotic division of oocytes. These results suggest that inositol exert its improving effects on maturation, by activating the PI (phosphatidylinositol) cycle and causing beneficial changes in both cytoplasm and membrane of oocytes.

  • PDF