• Title/Summary/Keyword: 억제인자

Search Result 1,336, Processing Time 0.035 seconds

INHIBITORY EFFECTS OF ER:YAG LASER ON THE GROWTH AND ACID PRODUCING ABILITY OF STREPTOCOCCUS MUTANS (Er:YAG 레이저 조사가 S. mutans의 성장 및 산 생성능에 미치는 영향)

  • Kim, Hee-Jin;Kook, Joong-Ki;Lee, Sang-Ho;Lee, Nan-Young
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.4
    • /
    • pp.660-666
    • /
    • 2003
  • The purpose of this study was to investigate the inhibitory effect of Er:YAG laser against the intraoral acid producing bacterium of S. mutans. Bacterial pellet containing S. mutans KCTC 3065 was irradiated by Er:YAG laser having a $650\;{\mu}m$ diameter beam by non-contact mode. Irradiated parameters were 50mJ, 10Hz and exposure time were 1s, 3s, 5s, 7s, 9s respectively. We obtained the following results of relative growth rate and acid-producing ability of S. mutans by culturing for 48hrs. 1. The growth rate of S. mutans was decreased in the group of laser irradiation compared to the control group(P<0.01). 2. The growth rate at laser irradiation group of 7s, 9s irradiation time was decreased significantly compared to the laser irradiation group of 1s, 3s, 5s irradiation time, until 12 hours(P<0.05). After 24 hours, all groups of laser irradiation were not found to be statistically different in each other. 3. The acid-producing ability of S. mutans was inhibited for a certain duration by irradiation of laser. In summary, the growth rate and acid producing ability of S. mutans decreased according to laser irradiation. This effect was directly related to the amount of irradiation time. These results suggested that Er:YAG laser had an growth inhibition effect on S. mutans.

  • PDF

The Efficacy of α-lipoic Acid on the Endotoxin-induced Acute Lung Injury (α-lipoic acid 후처치가 내독소로 유발된 급성폐손상에 미치는 효과)

  • Huh, Jin Won;Hong, Sang Bum;Kim, Mi Jung;Lim, Chae-Man;Koh, Younsuck
    • Tuberculosis and Respiratory Diseases
    • /
    • v.62 no.2
    • /
    • pp.105-112
    • /
    • 2007
  • Background: Oxidative stress may play an important role in the pathogenesis of endotoxin-induced acute lung injury (ALI). This study evaluated the therapeutic effect of ${\alpha}$-lipoic acid, a nonenzymatic antioxidant, in a rat model of lipopolysaccharide (LPS) induced ALI. Materials and Methods: ALI was induced in Sprague-Dawley rats by instilling LPS (E.coli, 3mg/Kg) into the trachea. The rats were classified into the control, control+${\alpha}$-lipoic acid, LPS, and LPS+${\alpha}$-lipoic acid groups.The lung lavage neutrophil count, cytokine-induced neutrophil chemoattractant (CINC), lung myeloperoxidase (MPO), and cytokine concentrations (TNF-${\alpha}$, IL-$1{\beta}$, IL-6 and IL-10) were measured at 2 h and 6 h after LPS administration. Results: The total cell and neutrophil counts of the LPS+${\alpha}$-lipoic acid groups were significantly lower than the LPS groups. The protein concentration in the BAL fluid was similar in the LPS groups and LPS+${\alpha}$-lipoic acid groups. The TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 concentrations in the BAL fluid were not decreased by the ${\alpha}$-lipoic acid treatment in the LPS treated rats. Conclusions: Although ${\alpha}$-lipoic acid decreased the level of LPS-induced neutrophil infiltration into the lung, it could not attenuate the LPS-induced ALI at the dose administered in this study.

THE EFFECT OF PKC PATHWAY & MAPK PATHWAY ON RUNX2 TRANSCRIPTIONAL ACTIVITY (Protein kinase C 및 MAPK pathway가 Runx2의 전사 활성에 미치는 영향)

  • Kim, Eun-Jung;Kim, Hyun-Jung;Ryoo, Hyun-Mo;Kim, Hyun-Jung;Kim, Young-Jin;Nam, Soon-Hyeun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.3
    • /
    • pp.337-344
    • /
    • 2002
  • Runx2, a Runt-related osteoblast-specific transcription factor, is essential for osteoblast differentiation and function. Runx2 was identified as a key regulator of osteoblast-specific gene expression through its binding to the OSE2 element present in these genes. However, little is known about the signaling mechanism regulating Runx2 activity. This study examines the role of protein kinase C (PKC) pathway and mitogen-activated protein kinase (MAPK) pathway in regulating Runx2 and bone marker genes (osteopontin; OP, osteocalcin; OC). Luciferase assay and Northern blot analysis suggested that the stimulation of PKC by PMA increased transcription activity of Runx2 and bone marker genes (OP and OC) and also increased expression of Runx2. The stimulation of MAPK by okadaic acid increased transcription activity of Runx2 and bone marker genes (OP and OC). Pretreatment with PD98059 (Erk pathway inhibitor) and SB203580 (P38 pathway inhibitor) prior to PMA treatment decreased PMA stimulated Runx2 activity. Together these results indicate that both PKC and MAPKs are involved in the regulation of Runx2 activity and also the stimulation of Runx2 transcriptional activity by the PKC pathway is through activation of MAPK pathway.

  • PDF

Stability Analysis and Reliability Evaluation of the Pretensioned Soil Nailing System (프리텐션 쏘일네일링 시스템의 안정해석 및 신뢰도 분석)

  • 김홍택;강인규;박사원;고용일;권영호
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.105-127
    • /
    • 1999
  • Application of the soil nailing method is continuously extended in maintaining stable excavations and slopes. Occasionally, however, ground anchor support system may not be used because of space limitations in urban excavation sites nearby the existing structures. In this case, soil nailing system with relatively short length of nails could be efficiently adopted as an alternative method. The general soil nailing support system, however, may result in excessive deformations particularly in an excavation zone of the existing weak subsoils. Pretensioning the soil nails then, could play important roles in reducing deformations mainly in an upper part of the nailed-soil excavation system as well as improving local stability. In the present study, the analytical procedure and design technique are proposed to evaluate maximum pretension force and stability of the pretensioned soil nailing system. Also proposed are techniques to determine the required thickness of a shotcrete facing and to estimate probability of a failure against the punching shear. The predicted results are compared with the limited measurements obtained from the excavation site constructed by using the pretensioned soil nails. Based on the proposed procedure and technique, effects of the radius of a influence circle and dilatancy angle on the thickness of a shotcrete facing, bonded length and safety factors are analyzed. In addition, effects of the reduction of deformations expected by pretensioning of the soil nails are examined in detail throughout an illustrative example and FLAC$^{2D}$ program analysis.s.

  • PDF

Induction of Anthocyanin and Betaine by Salinity Stress in Germinating Seeds (발아중인 종자로부터 Salinity Stress에 의해 유도되는 Anthocyanin과 Betaine에 관안 연구)

  • 이인순;문혜연
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.344-350
    • /
    • 2001
  • The effect of salinity stress of Brassica olearacea and Capsicum annuum were studied at various levels of salinity conditions(Na-gluconate, K-gluconate, NaCl, KCl). The effects of salinity stress were measured by seedling growth rates and secondary metabolites contents of the stressed plants. Each seedling studied on the response of different salinity stress. Seedling growth of Capsicum annuum was inhibited up to 200 mM salt tolerance and Brassica olearacea was inhibited up to 400 mM salt tolerance. The produced anthocyanin was separated to high value from 200 mM NaCl in case of Brassica olearana and 50 mM K-gluconate in case of Capsicum annuum. The BADH activity was very high in Brassica olearacea seedlings treated with 200 mM NaCl and in Capsicum annuum seedlings treated with 100 mM K-gluconate. The BADH activities were increased during the early culture days, it induced betaine synthesis. The salinity stress promoted BADH activiy, subsequently endogenous betaine contents were increased, and it seemed to be secure seedling from salinity stress. The salinity concentration of 200 mM was effective on the inhibition of seed germination and on the increase of proline accumulation in tissue. The inhibition of seedling growth and accumulation of secondary metabolites in seedling were caused osmotic hypersensitivity against salinity stress.

  • PDF

Inhibitory Effects of Acanthopanax chiisanensis Ethanolic Extracts on FcεRI α Chain Expression (지리 오갈피의 FcεRI α chain 발현 저해 효과)

  • Shim, Sun-Yup;Sung, Chan-Ki;Lee, Sang-Won;Choi, Young-Ju;Kim, Hyeung-Rak;Byun, Dae-Seok
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1511-1516
    • /
    • 2007
  • Basophils and mast cells play an important role in $Fc{\varepsilon}RI-mediated$ allergic reaction as effector cells. We studied the effects of Acanthopanax chiisanensis on $Fc{\varepsilon}RI\;{\alpha}$ chain expression in human basophilic KU812F cells. Ethanol extracts from root and stem of A. chiisanensis were tested for inhibitory effects of $Fc{\varepsilon}RI\;{\alpha}$ chain expression. The cell surface $Fc{\varepsilon}RI\;{\alpha}$ chain expression was examined by flow cytometric analysis. All of the extracts of A. chiisanensis reduced the cell surface $Fc{\varepsilon}RI\;{\alpha}$ chain expression. Furthermore, A. chiisanensis extracts caused a decrease in the level of $Fc{\varepsilon}RI\;{\alpha}$ chain mRNA level and $Fc{\varepsilon}RI-mediated$ histamine release. These results suggest that root and stem extracts of A. chiisanensis play an important role in anti-allergic activity via down-regulation of $Fc{\varepsilon}RI\;{\alpha}$ chain expression and decrease in release of inflammatory mediator such as histamine.

Induction of Apoptosis by Bee Venom in A549 Human Lung Epithelial Cancer Cells through Modulation of Bcl-2 and IAP Family and Activation of Caspases (Bcl-2 및 IAP family의 발현 변화와 caspase 활성을 통한 봉독의 인체폐암세포 apoptosis 유도)

  • Woo, Hyun-Joo;Kim, Hyun-Joong;Hong, Su-Hyun;Hong, Sang-Hoon;Choi, Byung-Tae;Lee, Yong-Tae;Park, Dong-Il;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1596-1600
    • /
    • 2007
  • Bee venom is used to treat inflammatory diseases in Korean traditional medicine and has been known to inhibit proliferation and induce apoptosis in cancer cells. However, the molecular mechanisms involved in bee venom-induced apoptosis are still uncharacterized in human lung cancer cells. In the present study, we investigated the effects of bee venom on the apoptosis of A549 human lung epithelial cancer cells. Treatment of bee venom inhibited the cell viability and induced apoptosis in a concentration-dependent manner as measured by hemocytometer counts, fluorescence microscopy and flow cytometry analysis. Bee venom-induced apoptosis in A549 cells was associated with a marked inhibition of anti-apoptotic Bcl-2 expression without significant changes in the levels of Bax and Bcl-xL. Bee venom treatment also inhibited the levels of IAP family members such as cIAP-1 and cIAP-2 and induced the proteolytic activation of caspase-3 and caspase-9. Although further studies are needed, the present results suggest that apoptotic signals evoked by bee vemon in A549 cancer cells may converge caspases activation through a down-regulation of Bcl-2 rather than an up-regulation of Bax. These findings provide important insights into the possible molecular mechanisms of the anti-cancer activity of bee vemon in human cancer cells.

Anti-oxidative and Anti-inflammatory Activities of Decaisnea insignis Ethanol Extract (Decaisnea insignis 에탄올 추출물의 항산화 및 항염증 활성)

  • Jin, Kyong-Suk;Lee, Ji Young;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.973-980
    • /
    • 2014
  • This study was conducted to explore new nutraceutical resources from the plant kingdom possessing biological activities. To fulfill this purpose, the anti-oxidative and anti-inflammatory activities of Decaisnea insignis ethanol extract (DIEE) were evaluated. First, DIEE possessed potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl (DPPH), similar to ascorbic acid used as a positive control. Moreover, DIEE inhibited lipopolysaccharide (LPS)- and hydrogen peroxide ($H_2O_2$)-induced reactive oxygen species (ROS) in RAW 264.7 cells. Furthermore, DIEE induced the expression of an anti-oxidative enzyme, heme oxygenase 1 (HO-1), and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2), in a dose-dependent manner. The modulation of the HO-1 and Nrf2 expressions might be regulated by mitogen-activated protein kinases (MAPKs) and their upstream signaling pathways. On the other hand, DIEE suppressed LPS-induced nitric oxide (NO) formation without cytotoxicity. The inhibition of the NO formation was the result of the downregulation of inducible NO synthase (iNOS) by DIEE. The suppression of NO and iNOS by DIEE might be modulated by their upstream transcription factors, nuclear factor ${\kappa}B$ ($NF-{\kappa}B$), and activator protein 1 (AP-1) pathways. Taken together, these results provide important new insights that D. insignis possesses anti-oxidative and anti-inflammatory activities. Therefore, it might be utilized as a promising material in the field of nutraceuticals.

Effect of antibacterial substances produced by probiotic lactic acid bacteria on histamine formation in rennet curd (렌넷 커드 내 히스타민 생성에 관한 프로바이오틱 유산균이 생산한 항균 물질의 영향)

  • Lim, Eun-Seo;Choi, Jae-Suk
    • Korean Journal of Microbiology
    • /
    • v.54 no.2
    • /
    • pp.113-125
    • /
    • 2018
  • Purpose of the present study was to investigate the factors affecting the production of antibacterial substances and histamine in rennet curd prepared by inoculation of histamine-producing lactic acid bacteria (LAB) and probiotic LAB. Probiotic Lactobacillus sakei PIL52 and Lactobacillus plantarum FIL20 produced strong antimicrobial agents against histamine-producing bacteria Lactobacillus brevis LAS129, Enterococcus faecium SBP12, and Enterococcus faecalis SBP58. The lactic acid and crude bacteriocin produced from the probiotic LAB inhibited histamine-producing bacteria in a concentration-dependent manner. As the number of probiotic LAB inoculated for the production of rennet curd increased, the antibacterial activity against histamine-producing bacteria was elevated due to the increased amount of lactic acid and crude bacteriocin in the sample. The growth of probiotic LAB as well as histamine-producing bacteria was inhibited by addition of 10% NaCl, thus the antibacterial substances and histamine contents in rennet curd were significantly lower than those of the control (P < 0.05). Meanwhile, the histamine content was not significantly increased when the rennet curd prepared by mixing probiotic LAB and histamine-producing bacteria was stored at $25^{\circ}C$ for 5 days. However, the amount of histamine detected in the rennet curd was significantly (P < 0.05) increased because the antibacterial activity of the bacteriocin produced by the probiotic LAB was decreased at $20^{\circ}C$ for 20 days.

Paraquat Induced Heme Oxygenase-1 in Dopaminergic Cells (도파민 세포에서 Paraquat에 의한 헴산화효소-1의 유도)

  • Chun Hong Sung
    • KSBB Journal
    • /
    • v.20 no.1 s.90
    • /
    • pp.21-25
    • /
    • 2005
  • Paraquat, a widely used herbicide, has been suggested as a potential risk factor for Parkinson's disease. Heme oxygenase-1(HO-1), a marker for oxidative stress and endoplasmic reticulum(ER) stress, is known to catalyze heme to biliverdin, carbon monoxide and free iron in response to various stimuli. Here we show that paraquat activates HO-1 expression in a time-and dose-dependent manner in substantia nigra(SN) dopaminergic neuronal cells. Activation of Ho-1 by paraquat was regulated primarily at the level of gene transcription. Deletion analysis of the promoter and the 5' distal enhancers, E1 and E2, of the HO-1 gene revealed that the E2 enhancer is a potent inducer of the paraquat-dependent Ho-1 gene expression in dopamninergic neuronal cells. Mutational analysis of the E2 enhacer further demonstrated that the transcription factor activator protein-1(AP-1) plays an important role in mediating paraquat-induced HO-1 gene transcription. Moreover, using specific inhibitors of the mitogen-activated protein kinases(MAPKs), we investigated the role of paraquat and MAPKs for HO-1 gene regulation in dopaminergic cells. The c-Jun N-terminal kinase(JNK) inhibitor SP600125 significantly suppressed the expression of HO-1 by paraquat. All these results demonstrate that induction of HO-1 by paraquat requies the activation of the AP-1 and JNK pathway.