본 논문에서는 한국어 문장형성원리를 간결하게 제시할 수 있도록 X-바 이론의 중심어 개념을 도입한 한국어 자질기반 문법을 제안한다. 제안하는 문법은 어절에 관계없이 나타나는 한국어의 문법현상을 명확히 설명할 수 있도록 어절 대신 형태소를 기본단위로 한다. 그리고, 한국어의 구문범주가 지닌 의미정보와 기능정보를 자질을 이용하여 독립적으로 표현하며, 구문범주간의 결합관계를 바탕으로 하는 자질연산을 수행하여 문장을 분석한다. 또한, 한국어의 부분자유어순과 생략현상에 대해 견고하게 분석할 수 있도록 자질연산을 이진결합중심의 CNF(Chomsky Normal Form)로 제한한다. 이렇게 구성된 한국어 자질기반 문법은 규칙을 직관적이고도 간단하게 기술하며, 한국어의 다양한 문장들을 견고하게 분석한다. SERI Test Suites 97과 신문기사에서 746문장을 추출하여 실험한 결과 94%~99%의 적용율을 보였다.Abstract In this paper, we propose a Korean feature-based grammar(KFG) which adopts the X-bar theoretic notion of headedness for a precise representation of Korean syntactic structure. In order to explain various language phenomena in a given sentence, we use not the word but the morpheme as a constituent unit of KFG. We use features manifesting both the syntactic information and the semantic information of Korean syntactic categories, and feature operations based on the association relationship between two categories. In addition, we restrict feature operations to CNF(Chomsky Normal Form) binary form, which provides a robust representation for properties in Korean such as the frequent ellipsis and the partial free-order. The KFG is intuitive, simple, and versatile in representing most Korean sentences. The experimental result shows 94%~99% coverage on 746 sentences extracted from SERI Test Suites 97 and newspaper sentences.
Korean delimits words by white-space like English, but words In Korean Is a little different in structure from those in English. Words in English generally consist of one word, but those in Korean are composed of one word and/or morpheme or more. Because of this difference, a word between white-spaces is called an Eojeol in Korean. We propose a method for segmenting and classifying Korean words and/or morphemes based on syllables using an instance-based learning. In this paper, elements of feature sets for the instance-based learning are one previous syllable, one current syllable, two next syllables, a final consonant of the current syllable, and two previous categories. Our method shows more than 97% of the F-measure of word segmentation using ETRI corpus and KAIST corpus.
KIPS Transactions on Software and Data Engineering
/
v.11
no.4
/
pp.169-178
/
2022
Morphemes are most primitive units in a language that lose their original meaning when segmented into smaller parts. In Korean, a sentence is a sequence of eojeols (words) separated by spaces. Each eojeol comprises one or more morphemes. Korean morphological analysis (KMA) is to divide eojeols in a given Korean sentence into morpheme units. It also includes assigning appropriate part-of-speech(POS) tags to the resulting morphemes. KMA is one of the most important tasks in Korean natural language processing (NLP). Improving the performance of KMA is closely related to increasing performance of Korean NLP tasks. Recent research on KMA has begun to adopt the approach of machine translation (MT) models. MT is to convert a sequence (sentence) of units of one domain into a sequence (sentence) of units of another domain. Neural machine translation (NMT) stands for the approaches of MT that exploit neural network models. From a perspective of MT, KMA is to transform an input sequence of units belonging to the eojeol domain into a sequence of units in the morpheme domain. In this paper, we propose a deep learning model for KMA. The backbone of our model is based on the BERT-fused model which was shown to achieve high performance on NMT. The BERT-fused model utilizes Transformer, a representative model employed by NMT, and BERT which is a language representation model that has enabled a significant advance in NLP. The experimental results show that our model achieves 98.24 F1-Score.
Annual Conference on Human and Language Technology
/
2007.10a
/
pp.261-268
/
2007
본 논문에서는 세종전자사전의 정보를 활용하여 논항 결합의 정확도를 향상시키는 한국어 구문분석 모델을 제안한다. 구문분석 과정에서 노드간의 결합 가능성을 계산할 때, 세종전자사전 동사사전의 격틀 정보, 논항 제약 정보와 명사사전의 의미부류 정보를 활용하여 가산점을 부여하여 사전의 내용과 일치하는 결합이 선호되도록 하였다. 이 과정에서 구조적 오류를 해결할 수 있었고, 결합에 참여하는 동사와 명사의 의미 중의성도 해소할 수 있었다. 평균 13어절 길이의 실험용 문장 50개를 대상으로 실험한 결과, 35% 정도의 오류 감소 효과를 볼 수 있었다. 또한 구문분석 결과 정보를, 전자 사전에 기술된 정보의 완결성을 시험하고 보완하는 데에도 활용하였다.
Automatic word spacing is a process of deciding correct boundaries between words in a sentence including spacing errors. It is very important to increase the readability and to communicate the accurate meaning of text to the reader. The previous statistical approaches for automatic word spacing do not consider the previous spacing state, and thus can not help estimating inaccurate probabilities. In this paper, we propose two statistical word spacing models which can solve the problem of the previous statistical approaches. The proposed models are based on the observation that the automatic word spacing is regarded as a classification problem such as the POS tagging. The models can consider broader context and estimate more accurate probabilities by generalizing hidden Markov models. We have experimented the proposed models under a wide range of experimental conditions in order to compare them with the current state of the art, and also provided detailed error analysis of our models. The experimental results show that the proposed models have a syllable-unit accuracy of 98.33% and Eojeol-unit precision of 93.06% by the evaluation method considering compound nouns.
Noun extraction plays an important part in the fields of information retrieval, text summarization, and so on. In this paper, we present a Korean base-noun extraction system and apply it to text summarization to deal with a huge amount of text effectively. The base-noun is an atomic noun but not a compound noun and we use tow techniques, filtering and segmenting. The filtering technique is used for removing non-nominal words from text before extracting base-nouns and the segmenting technique is employed for separating a particle from a nominal and for dividing a compound noun into base-nouns. We have shown that both of the recall and the precision of the proposed system are about 89% on the average under experimental conditions of ETRI corpus. The proposed system has applied to Korean text summarization system and is shown satisfactory results.
KIPS Transactions on Software and Data Engineering
/
v.5
no.9
/
pp.419-424
/
2016
Named entity recognition is required to improve the retrieval accuracy of patent documents or similar patents in the claims and patent descriptions. In this paper, we proposed an automatic named entity recognition for patents by using a conditional random field that is one of the best methods in machine learning research. Named entity recognition system has been constructed from the training set of tagged corpus with 660,000 words and 70,000 words are used as a test set for evaluation. The experiment shows that the accuracy is 93.6% and the Kappa coefficient is 0.67 between manual tagging and automatic tagging system. This figure is better than the Kappa coefficient 0.6 for manually tagged results and it shows that automatic named entity tagging system can be used as a practical tagging for patent documents in replacement of a manual tagging.
Proceedings of the Korean Society for Information Management Conference
/
1997.08a
/
pp.5-15
/
1997
기존의 대부분의 정보 검색 시스템은 문서에 대한 ‘자동 색인 단계’를 거쳐 질의자의 요구에 적합한 문서들을 추출하도록 되어 있다. 이 과정에서 얼마나 적합한 문서를 빠짐없이 검색하였는가 하는 문제가, 검색 시스템의 효율성들 판단하는 데 가장 중요한 열쇠가 된다. 이 글에서는 ‘명사’ 중심의 키워드 추출이 안고 있는 몇 가지 문제점들에 관해서 논의하였다. 즉, 합성어 키워드 구축의 필요성, 동사 구문 정보에 대한 필요성, 부사구 표현에 대한 기술 필요성, 그리고 발화 상황이 고려되어야 하는 점등이 검토되었고, 이에 관한 해결책으로, 어휘정보 및 어절 정보, 나아가 구문 정보들을 담고 있는, 보다 체계적인 한국어 사전 시스템이 구축되어야 함을 강조하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
1999.11b
/
pp.187-191
/
1999
비디오 프로그램에서 영상 내에 포함되어 있는 문자정보는 동영상의 내용 검색 및 색인을 위한 비디오 분할에 사용될 수 있다. 일반적으로 장면 내에 포함되어 있는 문자들은 해상도가 낮고 글자 크기와 형태가 다양하기 때문에 추출과 인식이 어려울 뿐만 아니라 의도하지 않은 배경화면의 문자인 경우도 많기 때문에 내용기반 검색에는 사용되기가 어렵다. 그러나 비디오 내에 포함된 문자정보가 나타나는 시작 프레임과 끝나는 프레임을 검출하여 비디오 프로그램을 분할함으로써 내용기반요약정보를 만들 수 있으며, 동영상의 내용 검색 및 색인에 사용할 수 있다. 일반적으로 문자정보의 추출에 의해서 비디오를 분할할 때 음성정보는 전혀 고려되지 않으므로 분할된 비디오 정보를 재생할 경우음성신호가 단어 또는 어절/음절의 임의의 점에서 시작되고 끝나게 되어 듣기에 부자연스럽게 된다 따라서 본 논문에서는 뉴스방송의 비디오 프로그램에서 문자정보가 포함되어 는 비디오의 시작 프레임과 끝 프레임을 중심으로 그에 대응되는 구간의 음성신호를 검출한 후 이를 적절히 처리하여 분할 된 비디오를 재생할 때 음성신호가 보다 자연스럽게 들릴 수 있도록 하는 방법에 대해 연구하였다.
Annual Conference on Human and Language Technology
/
1999.10d
/
pp.89-91
/
1999
이 논문은 한국어 정보검색 시스템 "미리내"의 내부 모듈인 색인어 추출 시스템의 성능 평가에 관한 내용이다. 성능 평가를 위해서 99년 ETRI에서 실시한 "형태소분석기 및 태거 비교 분석대회(MATEC99)"의 시험어절을 사용하였다. 정보검색 시스템 "미리내"는 한국어 정보검색을 위해 부산대학교에서 개발한 시스템이다. 한국어 형태소분석 및 태거 대회(MATEC99)를 위해 미리내 검색엔진의 색인어 추출 모듈을 일부 수정하여 명사를 추출하였다. 명사추출기이든 형태소분석기이든 응용프로그램의 특성에 맞춰져서 동작한다. 정보검색의 하위 모듈인 색인어 추출 시스템은 정보검색을 위해 변형된 결과를 출력하므로 성능 비교를 위해 일부 모듈의 수정이 불가피하였다. ETRI에서 실시한 MATEC99는 지금까지 객관적인 평가 기준이 없었던 한국어 형태소분석기, 태거, 명사추출기의 표준화에 중요한 역할을 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.