• Title/Summary/Keyword: 양중공법

Search Result 15, Processing Time 0.096 seconds

Identifying Construction Engineering Tasks at the Design Phase for Enhancing Constructability in High-rise Building Construction - Focused on Temporary Work - (고층 건축공사의 시공성 향상을 위한 설계단계의 시공엔지니어링 업무 도출 - 가설공사를 중심으로 -)

  • Lee, Jin-Woong;Cho, Kyu-Man;Kim, Tae-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.5
    • /
    • pp.453-463
    • /
    • 2017
  • Due to the increase in the size of buildings and scale, the importance of construction engineering that reflects the constructability from the design stage of the project is increasing. Especially, engineering efforts related to facilities, equipment and construction methods for temporary work at the design stage can significantly contribute to improvement of constructability and project performance. The purpose of this study is to derive construction engineering tasks on temporary work at the design phase of the high-rise building projects. 27 preliminary tasks were firstly investigated through literature review and experts' group interview, and the necessity and importance analysis of each tasks were then performed based on questionnaire survey. Most of the tasks related to plans on structural framework and lifting equipment were analyzed as relatively more important ones. Lastly, 21 engineering tasks, which are classified into 5 factors, were proposed through factor analysis. The factors were determined as 1) structural framework, measurement and circulation, 2) lifting equipment and pumping, 3) space zoning, 4) water supply, 5) temporary facility, electric power supply and lighting. The results of this study can be used as basic data for establishing efficient work process of construction engineering on temporary work at the design phase.

An Experimental Study on the Behaviours of Hollow CFT Column Subjected to Axial Load (중공 콘크리트충전 각형강관 기둥의 거동에 관한 연구 (I. 중심 압축실험))

  • Kim, Cheol-Hwan;Kim, Jong-Kil
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.69-76
    • /
    • 2006
  • Concrete Filled Steel Tube (CFT) system is advantageous because it increases the load-carrying capacity without increasing the size of column. However CFT system has many benefits, it is not applied to field generally because of its heavyweight and difficulty of concrete filling method. As a solution to these problems, we proposed concrete filled steel tube column with hollow made by factory-manufactured PC method. The hollow concrete filled steel tube system is expected to obtain the high strength and high capacity of deformation despite it is a lightweight. This study deals with mechanical properties, strength and deformation, of hollow concrete filled steel tube subjected to axial load. 9 specimens were tested to examine mechanical properties closely, and the following results were obtained: All specimens basically showed higher initial rigidity and maximum strength with increased concrete filling rate. And most specimens showed almost linear behavior until around 80% of maximum strength regardless of filling rate, it is estimated that the elastic range is up to a half of the maximum strength which is the yield strength level.

  • PDF

Electrokinetic Extraction of Metals from Marine Sediment (중금속으로 오염된 해양퇴적토의 전기동력학적 정화)

  • Kim, Kyung-Jo;Yoo, Jong-Chan;Yang, Jung-Seok;Baek, Kitae
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.733-738
    • /
    • 2013
  • Sediment contains a high fraction of organic matter, high buffering capacity, and a large portion of fine grained particles such as silt and clay, which are major barriers to remove heavy metals from sediments. In this study, a lab-scale electrokinetic (EK) technique was applied to remove heavy metals effectively from marine sediment at a constant voltage gradient of 2 V/cm. A concentration of 0.1 M of ethylenediaminetetraacetic acid (EDTA), citric acid (CA), $HNO_3$, and HCl were circulated in the cathode, and tap water was circulated in the anode. CA extracted 92.4% of Ni, 96.1% of Cu, 97.1% of Zn, and 88.1% of Pb from marine sediment. A higher voltage gradient enhanced the transport of citrate and EDTA into the sediment and, therefore, increased metal extraction from the marine sediment through a complexation reaction between metals and the chelates. Based on these results, the electrokinetic process using a high voltage gradient with EDTA and CA might be useful to extract heavy metals from marine sediment.

Effect of Surfactant on Reductive Dechlorination of Trichloroethylene by Zero-Valent Iron (양이온-비이온 혼합계면활성제의 첨가가 영가철을 이용한 TCE환원에 미치는 영향)

  • Shin, Min-Chul;Choi, Hyun-Dock;Yang, Jung-Seok;Baek, Ki-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.38-45
    • /
    • 2007
  • Trichloroethylene (TCE) is a representative dense non-aqueous phase liquid (DNAPL) and has contaminated substance environments including soil and groundwater due to leakage and careless. DNPAL, has been treated by surfactant-enhanced aquifer remediation (SEAR). After application of SEAR, groundwater contains still surfactant as well as little amount of residual TCE. Permeable reactive barrier using zero-valent iron (ZW) is a very effective technology to treat the residual TCE in groundwater. In this study, the effect of the residual surfactant on the reductive dechlorination of residual TCE was investigated using ZVI. Mixed surfactant composed of nonioinic surfactant and cationic surfactant was used as a residual surfactant because of toxicity and enhancement of dechlorination rate. Structure of surfactant affected significantly the decrhlorination rate of TCE. Mixed surfactant system with relatively short polyethylene oxide (PEO) chain in nonionic surfactant, cationic surfactant did not affect TCE dechlorination rate. However, mixed surfactant system with relatively long PEO chain in nonionic surfactant shows that TCE dechlorination rate was significantly dependent on fraction of cationic surfactant and HLB of nonionic surfactant. Cationic surfactant with trimethyl ammonium group enhanced reductive dechlorination rate compared to that surfactant with pyridinium group.

Analysis of BIM Utilization for On-site Construction Planning in Modular Construction Project (모듈러 건축공사의 현장시공계획수립을 위한 BIM 활용성 분석)

  • Lee, Myung-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.263-272
    • /
    • 2019
  • Building Information Modeling (BIM) and modular construction are regarded as important technologies that have contributed to advancements in the construction industry. However, the utilization of BIM in current modular construction projects is limited; moreover, there are no specific guidelines pertaining the applications of BIM in modular construction projects. Therefore, this study aims to analyze the utilization of BIM for onsite construction planning in modular construction projects. First, a realistic BIM application was selected through literature review and expert interviews. Then, the construction plan of the modular projects was analyzed to classify the BIM application items into five different categories. The utilization of BIM in each category was then analyzed in terms of necessity and efficiency using a questionnaire. Finally, the BIM Utilization Index (BIM UI) was suggested based on the findings of the survey. As a results, the BIM UI for module point details, lifting plan, other installation details, site layout plan, and schedule plan was 0.811, 0.787, 0.770, 0.729, and 0.699, in the descending order of usability. In addition, through the findings of the study and interviews with experts, a case study for implementation of BIM in modular construction plan was conducted. The results of this study can be used as application guidelines for BIM in future modular construction projects.