• Title/Summary/Keyword: 양자암호통신

Search Result 61, Processing Time 0.027 seconds

Security Vulnerability and Countermeasure on 5G Networks: Survey (5G 네트워크의 보안 취약점 및 대응 방안: 서베이)

  • Hong, Sunghyuck
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.197-202
    • /
    • 2019
  • In line with the era of the 4th Industrial Revolution, 5G technology has become common technology, and 5G technology is evaluated as a technology that minimizes the speed and response speed compared to 4G using technologies such as network slicing and ultra-multiple access. 5G NR stands for 5G mobile communication standard, and network slicing cuts the network into parallel connections to optimize the network. In addition, the risk of hacking is increasing as data is processed in the base station unit. In addition, since the number of accessible devices per unit area increases exponentially, there is a possibility of base station attack after hacking a large number of devices in the unit area. To solve this problem, this study proposes the introduction of quantum cryptography and 5G security standardization.

A study on Performance Evaluation for Network Architecture using Quantum Key Distribution Technology (양자암호기반의 통신망 구축 및 성능시험 검증연구)

  • Lee, Wonhyuk;Seok, Woojin;Park, Chanjin;Kwon, Woochang;Sohn, Ilkwon;Kim, Seunghae;Park, Byoungyoen
    • KNOM Review
    • /
    • v.22 no.2
    • /
    • pp.39-47
    • /
    • 2019
  • There are several big data-driven advanced research activities such as meteorological climate information, high energy physics, astronomy research, satellite information data, and genomic research data on KREONET. Since the performance degradation occurs in the environment with the existing network security equipment, methods for preventing the performance degradation on the high-performance research-only network and for high-speed research collaboration are being studied. In addition, the recent issue of quantum computers has been a threat to security using the existing encryption system. In this paper, we construct quantum cryptography-based communication network through environment construction and high-performance transmission test that build physical security through quantum cryptography-based communication network in end-to-end high-speed research network. The purpose of this study is to analyze the effect on network performance when performing physical encryption and to use it as basic data for constructing high-performance research collaboration network.

Concepts and Challenges of Quantum Key Distribution (양자 키 분배의 개념과 과제)

  • Ko, Min-hyuk;Kim, Do-hyun;Lee, Daesung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.114-115
    • /
    • 2021
  • In this paper, we would like to introduce the basic concepts of quantum key distribution techniques so far and the problems that need to be technically advanced. Quantum key distribution technology is a technology that generates non-tapable encryption keys and distributes them to both sender and receiver using the characteristics of Quantum, which is the minimum unit of physical quantity that can no longer be split. We would like to introduce BB84 protocol, a representative protocol of this technology, to explore realistic difficulties and future challenges.

  • PDF

Analysis of NIST PQC Standardization Process and Round 4 Selected/Non-selected Algorithms (NIST PQC 표준화 과정 및 Round 4 선정/비선정 알고리즘 분석)

  • Choi Yu Ran;Choi Youn Sung;Lee Hak Jun
    • Convergence Security Journal
    • /
    • v.24 no.2
    • /
    • pp.71-78
    • /
    • 2024
  • As the rapid development of quantum computing compromises current public key encryption methods, the National Institute of Standards and Technology (NIST) in the United States has initiated the Post-Quantum Cryptography(PQC) project to develop new encryption standards that can withstand quantum computer attacks. This project involves reviewing and evaluating various cryptographic algorithms proposed by researchers worldwide. The initially selected quantum-resistant cryptographic algorithms were developed based on lattices and hash functions. Currently, algorithms offering diverse technical approaches, such as BIKE, Classic McEliece, and HQC, are under review in the fourth round. CRYSTALS-KYBER, CRYSTALS-Dilithium, FALCON, and SPHINCS+ were selected for standardization in the third round. In 2024, a final decision will be made regarding the algorithms selected in the fourth round and those currently under evaluation. Strengthening the security of public key cryptosystems in preparation for the quantum computing era is a crucial step expected to have a significant impact on protecting future digital communication systems from threats. This paper analyzes the security and efficiency of quantum-resistant cryptographic algorithms, presenting trends in this field.

Recent Technology Trends of Free-Space Quantum Key Distribution System and Components (무선 양자암호통신 시스템 및 부품 최신 기술 동향)

  • Youn, C.J.;Ko, H.;Kim, K.J.;Choi, B.S.;Choe, J.S.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.6
    • /
    • pp.94-106
    • /
    • 2018
  • A quantum key distribution (QKD) provides in principle an unconditional secure communication unlike the standard public key cryptography depending on the computational complexity. In particular, free-space QKD can give a secure solution even without a fiber-based infrastructure. In this paper, we investigate an overview of recent research trends in the free-space QKD system, including satellite and handheld moving platforms. In addition, we show the key components for a free-space QKD system such as the integrated components, single photon detectors, and quantum random number generator. We discuss the technical challenges and progress toward a future free- space QKD system and components.

Technology Trends in Biometric Cryptosystem Based on Electrocardiogram Signals (심전도(Electrocardiogram) 신호를 이용한 생체암호시스템 기술 동향)

  • B.H. Chung;H.C. Kwon;J.G. Park
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.5
    • /
    • pp.61-70
    • /
    • 2023
  • We investigated technological trends in an electrocardiogram (ECG)-based biometric cryptosystem that uses physiological features of ECG signals to provide personally identifiable cryptographic key generation and authentication services. The following technical details of the cryptosystem were investigated and analyzed: preprocessing of ECG signals, extraction of personally identifiable features, generation of quantified encryption keys from ECG signals, reproduction of ECG encryption keys under time-varying noise, and new security applications based on ECG signals. The cryptosystem can be used as a security technology to protect users from hacking, information leakage, and malfunctioning attacks in wearable/implantable medical devices, wireless body area networks, and mobile healthcare services.

Comparisons of error rate according to eavesdropping rate and basis number in quantum key distribution protocols BB84 and B92 (양자 키 분배 프로토콜 BB84 와 B92 에서 도청률과 기저의 수에 따른 error rate 비교)

  • Lee, Sun-Ah;Moon, Bong-Kyo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.358-361
    • /
    • 2020
  • 양자 암호통신에서는 키를 실시간으로 안전하게 분배하는 양자 키 분배방식이 핵심이다. 본 논문에서는 양자 키 분배 방식인 BB84 protocol 과 B92 protocol 을 python 으로 구현(이를 Lee's code 라 명명)한다. 기존에 존재하는 양자 simulator 와 LEE's code 를 이용해 error rate 의 차이를 두 가지 관점(기저에 따른 차이, 도청률에 따른 차이)에서 비교한다. 이를 바탕으로 어떤 protocol 이 도청자로부터 더 취약한지 알아본 결과, B92 protocol 의 QBER 이 항상 높으므로 도청자를 잡아내기는 쉽지만, 기저가 두 가지 밖에 없으므로 도청자의 공격에는 취약함을 알 수 있다.

Applications of Image Steganography Using Secret Quantization Ranges (비밀 양자화 범위를 이용한 화상 심층암호 응용)

  • Shin Sang-Uk;Park Young-Ran
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.3
    • /
    • pp.379-388
    • /
    • 2005
  • Image steganography Is a secret communication scheme to transmit a secret message, which is embedded into an image. The original image and the embedded image are called the cover image and the stego image, respectively. In other words, a sender embeds a secret message into a cover image and transmits a stego image to a receiver, while the receiver takes the stego image, extracts the message from it, and reads the message. General requirements for steganography are great capacity of secret messages, imperceptibility of stego images, and confidentiality between a sender and a receiver. In this paper, we propose a method for being satisfied with three requirements. In order to hide a secret message into a cover image safely, we use a difference value of two consecutive pixels and a secret quantization range. The former is used for the imperceptibility and the latter for the confidentiality. Furthermore, the number of insertion bits is changed according to the difference value for the imperceptibility. Through experiments, we have shown that our method is more good quality of stego images than many other related methods and increases the amount o( message insertion by performing dual insertion processing for some pixels.

  • PDF

IT기반 융합촉진을 위한 전문인력 양성방안

  • Hwang, Gyu-Hui
    • Information and Communications Magazine
    • /
    • v.25 no.11
    • /
    • pp.42-47
    • /
    • 2008
  • 나노기술, 정보통신기술, 바이오 기술 등을 중심으로 기술융합이 급속히 진행되는 가운데, 이러한 변화에 대응할 수 있는 인력 양성의 필요가 제기되고 있다. 이에 대하여, 본고에서는 지식형성측면을 중심으로, 이러한 융합기술의 확산에 대응한 융합인력양성의 방향성을 제시하고자 한다. 융합기술에 대응한 인력양성 및 활용을 위해서는, 융합기술의 진행에서 지식의 속성이 어떠한 변화를 가지는지, 또한 특정한 속성의 변화가 존재한다면 새로운 속성을 포함한 지식의 생성과 습득은 어떠한 과정을 통해 달성될 수 있는지가 규명되어야 할 것이다. 본고는 IT기반 의공학부문과 양자암호체계에서의 융합연구 사례를 통해, 기술 성격과 지식 습득 전략을 검토하고, 이들 융합기술 수행과정상의 특징으로 부터 인력양성에 대한 함의를 얻고자 한다.

An enhanced method using NP-complete problem in Public Key Cryptography System (NP-complete 문제를 이용한 공개키 암호 시스템 개선)

  • Baek, Jaejong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2865-2870
    • /
    • 2015
  • Recently, due to the hardware computing enhancement such as quantum computers, the amount of information that can be processed in a short period of time is growing exponentially. The cryptography system proposed by Koblitz and Fellows has a problem that it can not be guaranteed that the problem finding perfect dominating set is NP-complete in specific 3-regular graphs because the number of invariant polynomial can not be generated enough. In this paper, we propose an enhanced method to improve the vulnerability in 3-regular graph by generating plenty of invariant polynomials.