• Title/Summary/Keyword: 양이온 전도도

Search Result 222, Processing Time 0.028 seconds

The Electrochemical Properties of PAN-PVDF-PEGME Blend Polymer Electrolyte System (PAN-PVDF-PEGME Blend계 고분자전해질의 전기화학적 특성)

  • Ryu, Kwang Sun;Lee, Gye Joong;Liou, Kwang Kyoung;Kang, Seong Gu;Chang, Soon Ho
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.2
    • /
    • pp.199-205
    • /
    • 1999
  • The electrochemical properties of PAN-PVDF-PEGME blend polymer electrolyte system are investigated and the physical properties are also measured with varying the content of PEGME. This PEGME partially reduces the crystallinity of PVDF. The ionic conductivities of the polymer electrolytes are about $10^{-3}S/cm$, which may be applicable to a constituent of lithium secondary battery. From the temperature dependence of ionic conductivity, it is suggested that the ionic conductivity increases with the PEGME content due to the fomation of effective ion-conducting path. The cation transference number reaches its maximum value for the electrolytes (SPE 2) with 10 wt% PEGME and then decreases for further increase of PEGME contnet. The electrochemically stable range of SPE 1 (without PEGME) is about 4.3 V, but SPE 2-4 (PAN-PVDF-PEGME system) is about 4.6 V. When these polymer electrolyte are used as electrolyte in rechargeable battery and the cell performances are tested, the discharge capacity increses with the amount of PEGME. Therefore, PEGME increases the ionic conductivity, extends the electrochemical stable range, and finally improves the discharge capacity of cell adopting the electrolyte system.

  • PDF

Effect of Chlorine Concentration of ZnO as Electron Collecting Layer in Inverted Organic Photovoltaics (역구조 유기태양전지에서 전자 수집 층으로 사용되는 산화 아연의 염소 이온 농도에 따른 효과)

  • Jeong, Jae Hoon;Kim, Min Gyeong;Lim, Dong Chan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.265-265
    • /
    • 2015
  • Zinc Oxide 층은 역구조 유기 태양전지(Inverted Organic Photovoltaics, IOPV)에서 전자 수집 층으로 사용되는데, 전자 수집 및 전기 전도도 증가를 위하여 일반적으로 3차원 나노 구조체 및 양이온이 도핑된 Zinc Oxide 층이 사용된다. 본 연구에서는 저온 3차원 나노 구조체 및 음이온이 도핑된 Zinc Oxide 층을 적용하였으며, 그 결과 전자 수집 향상, 전기 전도도의 증가에 의하여 광전변환 효율(Power Conversion Efficiency, PCE)이 향상됨을 확인할 수 있었다.

  • PDF

Preparation of Cation Exchange Membrane using Polybenzimidazole and Its Characteristic (폴리벤지미다졸(PBI)을 이용한 양이온교환막의 제조 및 특성)

  • Kim, Joeng-Geun;Lee, Sang-Ho;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.22 no.4
    • /
    • pp.265-271
    • /
    • 2012
  • Polybenzimidazole (PBI) was prepared by condensation polymerization using diaminobenzidine (DAB) and isophtalic acid (IPAc). The cation exchange membrane was prepared by introduce the ion exchange group in the PBI polymer. It was confirmed from FT-IR analysis that the prepared PBI powder had same peak compared with commercial PBI power. The ionic conductivity of PBI film was $0.1{\sim}0.9{\times}10^{-2}$ S/cm. The ionic conductivity of prepared SPBI cation exchange membrane showed $3.7{\sim}4.7{\times}10^{-2}$ S/cm and had higher than Nafion117 ($2.0{\times}10^{-2}$ S/cm).

Studies on the Addition of the Hydroquinonesulfonic Acid to Poly(vinyl alcohol)/poly(acrylic acid-co-maleic acid) Membranes to Improve the Ion Conductivity for Fuel Cell Applications (Poly(vinyl alcohol)/poly(acrylic acid-co-maleic acid) 이온교환막에 이온전도도 향상을 hydroquinonesulfonic acid 첨가 연구)

  • 임지원;황호상
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.44-52
    • /
    • 2004
  • This paper concerns the development of a cationic polymeric membranes for direct methanol fuel cell. The crosslinked poly(vinyl alcohol) (PVA) membranes with poly(acrylic acid-co-maleic acid) (PAM) and hydroquinonesulfonic acid (HQSA) as the crosslinking agents were prepared according to the amount of crosslinking agents. The resulting membranes were characterized in terms of methanol permeability, proton conductivity, water content and ion exchange capacity. The methanol permeability and proton conductivity increased with increasing PAM content up to 9 wt% and then decreased. This trend is considered the effect of the cross linking rather than the introduction of hydrophilic groups. When the HQSA contents were varied, no interesting increases of proton conductivity, water content and ion exchange capacity were found.

Ion Conductivity of Membrane in Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지에서 고분자 막의 이온 전도도)

  • Hwang, Byungchan;Chung, Hoi-Bum;Lee, Moo-Seok;Lee, Dong-Hoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.593-597
    • /
    • 2016
  • The effects of relative humidity, current density and temperature on the ionic conductivity were studied in PEMFC (Proton Exchange Membrane Fuel Cell). Water contents and water flux in the electrolyte membrane largely affected ion conductivity. The water flux was modelled and simulated by only electro-osmotic drag and back-diffusion of water. Ion conductivities were measured at membrane state out of cell and measured at MEA (Membrane and Electrode Assembly) state in condition of operation. The water contents in membrane increase as relative humidity increased in PEMFC, as a results of which ion conductivity increased. Current enhanced electro-osmotic drag and back diffusion and then water contents linearly increased. Enhancement of current density results in ion conductivity. Ion conductivity of about 40% increased as the temperature increased from $50^{\circ}C$ to $80^{\circ}C$.

Convenient Preparation of Ion-Exchange PVdF Membranes by a Radiation-Induced Graft Polymerization for a Battery Separator (배터리 분리막을 위한 이온교환형 PVdF 맴브레인의 방사선 그래프트법에 의한 간편한 제조법)

  • Kim, Sang-Kyum;Ryu, Jung-Ho;Kwen, Hai-Doo;Chang, Choo-Hwan;Cho, Seong-Ho
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.126-132
    • /
    • 2010
  • A cation-exchange nanofiber poly(vinylidene fluoride) (PVdF) membrane was prepared by a radiation-induced graft polymerization (RIGP) of sodium styrene sulfonate (NaSS) in the presence of the polymerizable access agents in methanol solution. The used polymerizable access agents include styrene, acrylic acid, and vinyl pyrrolidone. The anion-exchange nanofiber PVdF membrane was also prepared by RIGP of glycidyl methacrylate (GMA) and its subsequent chemical modification. The successful preparations of cation- and anion-exchange PVdF membranes were confirmed via SEM, XPS and thermal analysis. The content of the grafting yield, ion-exchange group, and water uptake was in the range of 30.0~32.3%, 2.81~3.01 mmol/g and 66.6~147%, respectively. The proton conductivity at 20$^{\circ}C$ was in the range of 0.020~0.053 S/cm. From the result, the prepared ionexchange PVdF membrane can be used as a separator in battery cells.

Preparation and Characterization of Hybrid Membrane for Block Copolymer Containing Diphenyl Unit Increasing Cationic Conductivity for Fuel Cells (연료전지용 양이온 전도성이 증가된 디페닐 단위를 갖는 블록공중합체 혼성막 제조 및 특성)

  • KIM, AE RHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.465-470
    • /
    • 2017
  • Sulfonated fluorinated block copolymers having diphenyl units were mixed with the sulfonated cationic conductive polymers at an optimum mixing ratio to form hybrid membranes for fuel cells and their characteristics were studied. 2D and 3D AFM topology analysis confirmed that the number of hydrophilic units in the hybrid membrane was improved. Through the FE-SEM, the microstructure of the hybrid membrane implied hydrogen bonding and pi-pi interactions, and EDAX confirmed carbon, oxygen, sulfur, and fluorine. The thermogravimetric analysis showed that the hybrid membrane was thermally stable and the hydrophilicity of the hybrid membrane was increased by the contact angle of water droplets. As a result, it was confirmed that the cation conductivity increased by a factor of 1.8 times as the number of acidic domains in the hybrid film increased.

Preparation and Properties of Sulfonated Polyvinylchloride (PVC) Membrane for Capacitive Deionization Electrode by Ultra Sonication Modification (초음파 표면개질에 의한 CDI 전극용 술폰화 염화비닐(PVC) 멤브레인의 제조 및 특성)

  • Hwang, Chi Won;Oh, Chang Min;Hwang, Taek Sung
    • Journal of Adhesion and Interface
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Ion exchange membrane is widely used in various fields such as electro dialysis, diffusion dialysis, redox flow battery, fuel cell. PVC cation exchange membrane using ultrasonic modification was prepared by sulfonation reaction in various sulfonation times. Sulfuric acid was used as a sulfonating agent with ultrasonic condition. We've characterized basic structure of sulfonated PVC cation exchange membrane by FT-IR, EDX, water uptake, ion exchange capacity (IEC), electrical resistance (ER), conductivity, ion transport number and surface morphology (SEM). The presence of sulfonic groups in the sulfonated PVC cation exchange membrane was confirmed by FT-IR. The maximum values of water uptake, IEC, electrical resistance and ion transport number were 40.2%, 0.87 meq/g, $35.2{\Omega}{\cdot}cm^2$ and 0.88, respectively.

Molecular Dynamics Study on Oxygen Ions Diffusion of Gd-doped Ceria (Gd-doped Ceria의 산소이온 확산에 대한 분자동력학법 연구)

  • 강은태;김희승
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.8
    • /
    • pp.698-704
    • /
    • 2001
  • Doped ceria의 전기전도도는 도핑 원소의 종류와 양에 큰 의존성을 가지고 특정 조성에서 최대 전도도 값을 가지며 높은 dopant 농도에서는 전기전도도는 감소한다. 이런 현상은 dopant와 산소 빈자리 사이의 회합 형성과 관련이 있다고 알려져 있다. 그러나 Gd 이온이 도핑된 ceria의 경우 주된 회합종이 (2G $d_{Ce}$ $V_{o}$ )인지 (G $e_{Ce}$ $V_{o}$ ) 인지는 명확하게 알려져 있지 않다. 본 연구에서는 회합분포가 전기전도도에 미치는 영향을 연구하기 위해 결함의 회합종과 분포가 다른 3가지 경우에 대해서 시뮬레이션을 행하였다. 분자동력학법을 이용하여 다양한 온도와 다른 회합분포의 경우에 대해 산소 확산계수가 계산되어졌으며, 계산된 산소 확산계수는 실험적으로 결정된 bulk 전도도로부터 얻어진 산소 확산계수와 비교되어졌다. 그 결과 (2G $d_{Ce}$ $V_{o}$ )와 (G $e_{Ce}$ $V_{o}$ ) 회합이 공존하며 이들이 통계학적으로 이항 분포를 가지는 경우가 실험적으로 보고된 값과 가장 일치하는 결과를 얻을 수 있었다.

  • PDF