• Title/Summary/Keyword: 양이온 응집

Search Result 73, Processing Time 0.027 seconds

Soil Characteristics of the Saprolite Piled Upland Fields at Highland in Gangwon Province (강원도 고랭지의 석비레 성토지 토양 특성)

  • Park, Chol-Soo;Jung, Yeong-Sang;Joo, Jin-Ho;Yang, Jae-E
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.66-73
    • /
    • 2004
  • As one of the typical farming practices in the sloped upland in Pyeongchang and Hongcheon area, application of piling with coarse saprolite materials has been practiced by farmers for several reasons such as reduction of damage by monocropping, better development of plant roots, and better drainage. However, adverse effect on application of coarse saprolite soil materials to environmental aspects should not be ignored. Therefore, this research was conducted to evaluate the physicochemical properties of coarse saprolite materials in upland fields in Pyeongchang area. According to particle size distribution of coarse saprolite materials, averaged gravel contents for Pyeongchang and Hongcheon county were 16.7 and 25.3%, respectively. There was no significant difference in gravel contents by soil depth, and CV values for each particle size ranged from 20 to 40%, which implied that application of coarse material with similar properties. When we compared CEC values of dressed soil with or without considering gravel content, CEC values decreased as increasing gravel contents. The penetration resistances were 0.04-7.48 MPa at the 0 to 10 cm surface soil, and 0.10 to 8.80 MPa at the depth below 11 cm. The bulk density of the soil was $1.15g\;cm^{-3}$ at the surface soil and 1.29 to $1.35g\;cm^{-3}$ at the soil depth below 10 cm. The organic matter content, cation exchange capacity, and avaliable $P_2O_5$ concentrations of soil in upland where piling with saprolite materials of Pyeongchang area applied were $12.4g\;kg^{-1}$, $7.1cmol_c\;kg^{-1}$, and $526mg\;kg^{-1}$, respectively. Cation exchange capacity was lower than that of averaged Korean upland soil, while available $P_2O_5$ concentration was relatively higher than that of averaged Korean upland, which indicated high input of various fertilizers.

황토의 인흘착 성능평가

  • 허영오;손지호
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1997.10a
    • /
    • pp.65-66
    • /
    • 1997
  • 우리나라의 대부분 하천과 인공댐의 경우 조류발생에 기여하는 영양염은 질소, 인 그리고 규소 등인데 특히 인이 생산제한 인자로 작용하고 있다. 따라서 인을 적절히 제거할 경우에는 조류 발생에 의한 수질의 악화와 수이용의 저해요인을 배제할 수 있어 이에 대한 연구가 많이 진행되어 왔다. 지금까지와 연구는 인의 화학적 응집 침전법, 생물학적 처리법에 대하여 수행되어 왔으나 설비자금, 운영비, 운전기술, 슬러지 생성 그리고 제거효율 등에서 만족스런 결과가 도출되지 못하여 현장 적용을 하지 못하고 있는 실정이다. 이러한 현실을 감안하여 우리의 자연 환경에서 쉽게 자할 수 있는 황토를 모재로하여 Al3-과 Fe3-, Ca2-을 적절히 배합하여, 주로 인을 선택적으로 제거하 고자 개발된 황토의 흡착능력 그리고 흡착 메카니즘에 대한 기본적인 연구를 하고자 (1) 등온흡착실험을 통하여 흡착용량을 평가하고 (2) 흡착제거속도를 평 가하였고 (3)파과시간 및 흡착특성을 파악하기 위해 column 흡착실험을 하였다 또한 (4) 황토내의 Al3-, Fe3-과 Ca2- 등이 인의 화학적 흡착에 기여하는 정도를 파악하여 흡착메카니즘을 규명하고자 하였다. 먼저 흡착용량실험을 위하여 PO3-4-P 농도 3ppm의 용액 200mf에 황토 0.2g, 0.5g, 1.0g, 2.0g을 각각 투여한 후 충분한 흡착평형이 일어나게 24시간 동 안 130rpm으로 $25^{\circ}C$ 등온반웅조에서 저어주어 흡착평형에 도달하면 상등액을 GF/C Filter로 여과한 후, 여액에 대해 PO3-4-P의 농도를 Ascrobic he건법으로 측정한 결파, Freundlich 등온흡착식에 의하면 K값은 17.34와 16.28이었으며 1/n 값은 1.32와 1.42로 인흡착 성능이 뛰어난 것으로 평가되었다. 둘째, 흡착속도 실험은 PO3-4-P 농도 1.5ppm의 용액 2f에 259의 황토를 투여하고 충분한 혼합이 일어날 수 있도록 170rpm으로 교반하면서 시간별 용액 의 농도 변화를 측정한 결과, 0.45mg/g/m교의 속도로 15분만에 94.3%의 인 제거 효율을 보였다. 셋째, 직경 12mm의 glass column에 황토를 209 채우고 1.5ppm의 PO34P 용액을 2.Sne11in의 유량으로 통수 시킨 후, 시간에 따른 농도 변화를 측정한 결과, 원수 농도의 50%에 해당하는 파과점까지 약 70시간 만에 도달하였다. 넷째, Al3-, Fe3-과 Ca2- 등이 화학적 흡착에 기여하는 정도를 파악하기 위 하여 황토 2g에 대하여 Hieltijes and Lijklema 방법에 의해 Adsorbed-p, Nonapatite inorganic-P(NAI-P), Apatite-p, Organic-P로 구분하여 분석하고, 총인(Total Phosphorus)을 Standard Methods에 따라 Persulfate digestion후 0.45 m membrane 여지 여과하여 여액에 대해 PO3-4-P의 농도를 Ascorbic Acid 법으로 측정한 결과, NAI-P가 가장 큰 비율을 차지하였고, 부원료로 첨가된 금속 양이온 중 Fe3-이온이 흡착에 기여하는 정도가 가장 큰 것으로 평가되었다.

  • PDF

Effect of Cationic Starch and MFC Addition on the Flocculation Behaviour of GCC (양이온성 전분과 MFC 투입이 GCC의 응집거동에 미치는 영향)

  • Yong, Seong Moon;Lee, Yong Kyu;Won, Jong Myoung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.82-92
    • /
    • 2016
  • The reduction of carbon dioxide emission is hot issue in the world because we are confronted with serious global warming and climate change. As a part of carbon dioxide reduction efforts, various approaches for increasing filler loading have been carried out in order to decrease the energy consumption in papermaking processes. Effects of the pretreatment of GCC with cationic starch and MFC on the flocculation behaviour of GCC were investigated in this study. Pretreatment of GCC with cationic starch caused the change of electric charge of suspension and flocculation behaviour of GCC. Largest flocculation size was obtained near the isoelectric point in the case of cationic starch treatment. When MFC (30 times grinded) was added after preflocculation of GCC with cationic starch, the flocculation size was increased, but largest flocculation size was obtained at -150 mV of electric charge of suspension in this study. However the addition of highly grinded MFC (60 times grinded) caused smaller flocculation size of GCC than those of MFC (30 times grinded). When GCC and MFC were mixed first, and then cationic starch was added, the characteristics of MFC and the change of electric charge which could be brought by cationic starch did not affect the flocculation size of GCC at all. The flocculation size obtained by the combination of cationic starch and MFC was smaller than those of cationic starch. These results show that flocculation behaviour could be controlled by the change of electric charge of suspension and the combination methods of cationic starch and MFC.

Preparation of ZnO nanorods by hydrothermal method and their $NO_2$ sensing characteristics (수열합성법을 이용한 ZnO 나노로드의 제조 및 이산화질소 감응 특성)

  • Cho, Pyeong-Seok;Kim, Ki-Won;Lee, Jong-Heun
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.506-511
    • /
    • 2006
  • ZnO nanorods were prepared by the hydrothermal reaction of a solution containing $Zn(NO_3)_2{\cdot}6H_2O$, NaOH, cyclohexylamine, ethanol and water, and their $NO_2$ and CO sensing behaviors were investigated. By the control of water concentration in solution, the morphology and agglomeration of ZnO nanorods could be manipulated, which is associated with the variation of $[OH^-]$ resulted from an interaction between water and cyclohexylamine. Sea-urchin-like and well-dispersed ZnO nanorods were prepared at low and high water content, respectively. Well-dispersed ZnO nanorods showed 1.8 fold change in resistance at 1 ppm $NO_2$ while there was no significant change in resistance at 50 ppm CO. This selective detection of $NO_2$ in the presence of CO can be used in automated car ventilation systems.

Effects of the Variables in the Fabrication of Anode on the Performance of DMFC (직접 메탄올 연료전지용 산화극 제조 변수가 성능에 미치는 영향)

  • Kim, Joon-Hee;Ha, Heung-Yong;Oh, In-Hwan;Hong, Seong-Ahn;Lee, Ho-In
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.18-22
    • /
    • 2003
  • Single cell performance has been investigated and characterized with variables in the fabrication of DMFC anode. The performance was checked as a function of ionomer content which affects ion conductivity in the catalyst layer, and catalyst slurry solvent which determines structure of agglomerates consisting of an ionomer and a catalyst. Anode with total ionomer to catalyst ratio of 0.6 showed the best performance and the lowest polarization resistance. Also, electrochemically effective surface area increased with ionomer content. As solubility of the ionomer decreases with decreasing solvent polarity, the size of agglomerates consisting of a catalyst and an ionomer became larger in the less polar solvent. The anode using DPK $(\varepsilon=12.60)$ as a solvent, which is less polar than generally-used water or alcohol species, showed the maximum performance and the lowest polarization resistance.

Effect of Mixing Shear on Flocculation of Anionic PAM and Cationic Starch Adsorbed PCC and Its Effect on Paper Properties (교반 속도가 음이온성 PAM과 양이온성 전분으로 도포된 경질탄산칼슘의 응집과 종이 물성에 미치는 영향)

  • Choi, Do-Chim;Won, Jong Myoung;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.2
    • /
    • pp.53-60
    • /
    • 2015
  • The effects of stirring speed during filler modification by dual polymers on flocculation and reflocculation of PCC (precipitated calcium carbonate) particles and its effect on handsheet properties were elucidated. PCC surface was modified by adsorbing A-PAM (anionic polyacrylamide) and C-starch (cationic starch) in series at various stirring speeds. It was found that increasing stirring speed during filler modification decreased the initial floc size of PCC. Continuous stirring with the same speed for filler modification resulted in the decrease of a floc size, eventually reached a steady state. The variations in a floc size was influenced by the stirring speed during filler modification: the lower the stirring speed during filler modification, the larger the floc size variations. Conclusively, the stability of PCC floc could be improved by increasing the stirring speed. In addition, the stirring speed influenced the handsheet properties. The smaller the PCC floc, the lower the strength of handseet. However, too much larger floc size also deteriorated paper strength. There exists an optimum floc size in term of paper strength which shall be controlled by stirring speed during filler modification.

A Study on Alumina Nanoparticle Dispersion for Improving Injectivity and Storativity of CO2 in Depleted Gas Reservoirs (고갈 가스전에서 CO2 주입성 및 저장성 향상을 위한 알루미나 나노입자의 분산 특성 연구)

  • Seonghak Cho;Chayoung Song;Jeonghwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.23-32
    • /
    • 2023
  • In this study, the Al2O3 nanofluid was synthesized as an additive for improving the injection efficiency and storage capacity of carbon dioxide (CO2) in a depleted sandstone reservoir or deep saline aquifer. As the base fluid, deionized water (DIW) and saline prepared by referring to the composition of API Brine were used, and the fluid was synthesized by using Al2O3 nanofluid with CTAB (cetyltrimethyl-ammonium bromide), a cationic surfactant. After that, the dispersion stability was evaluated by using visual observation, dynamic light scattering (DLS), transmission electron microscope (TEM), and miscibility test. As a result, it was presented that stable nanofluid without agglomeration and precipitation after reaction with 70,000 ppm of brine could be synthesized when the nanoparticle concentration was 0.05 wt% or less.

Anti-microbial, Anti-oxidant, and Anti-thrombosis Activities of the Lees of Bokbunja Wine (Rubus coreanus Miquel) (복분자주 주박의 항균, 항산화 및 항혈전 활성)

  • Kim, Mi-Sun;Kang, Dong-Kyoon;Shin, Woo-Chang;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.25 no.7
    • /
    • pp.757-764
    • /
    • 2015
  • The immature fruit of Rubus coreanus Miquel (bokbunja in Korean) is mainly consumed as a fruit wine due to its sour taste and low sugar content. The lees (LBW) remaining after the production of bokbunja wine are discarded as they have no specific usage. The aim of this study was to develop high-value-added biomaterials for functional foods and beauty/health products by investigating the anti-microbial, anti-oxidant, and anti-thrombosis activities of LBW using ethanol and hot water extracts and their subsequent organic solvent fractions. The ethyl acetate (EA) fraction of LBW extracts has a high polyphenol content (413–459 mg/g), and showed strong anti-microbial activity against gram-positive bacteria. The EA fraction also showed excellent radical-scavenging activity against DPPH anion, ABTS cation, and nitrite, with strong reducing power. The polyphenol-enriched EA fraction strongly inhibited thrombin, prothrombin, and blood coagulation factors. The butanol fraction showed a specific inhibition of coagulation factors, as measured in activated partial thromboplastin time assay, which is linked to intrinsic blood coagulation. The butanol fraction also showed strong inhibition of platelet aggregation, at levels comparable to aspirin. The residue of the hot-water extract, which is produced by sequential solvent fractionation of the LBW extract, showed superior inhibition against platelet aggregation when compared to aspirin. Our results suggest that the LBW, which are currently discarded, are a promising source of novel functional foods and beauty/health products.

The Flow Properties and Stability of O/W Emulsion Composed of Various Mixed Nonionic Surfactants(II) The Phase Behavior and Flow Properties of O/W Emulsion According to the Addition of the Long Chain Alcohols (혼합 비이온계면활성제의 조성에 따른 O/W 에멀젼의 유동특성 및 안정성(II) 고급 알코올의 첨가에 따른 O/W 에멀젼의 상거동 및 유동특성)

  • Lee, Ho-Sik;Kim, Jum-Sik
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.423-431
    • /
    • 1993
  • Long chain alcohols, the mixtures of 1-hexadecanol/1-octadecanol, were used as cosurfactants for O/W emulsion prepared with glycerol monostearate/POE(100) monostearate mixed nonionic surfactants, and the phase behavior and flow properties of O/W emulsions were observed. The transition temperature of long chain alcohol was varied with the composition of 1-hexadecanol/1-octadecanol and had the lowest value when the mixed ratio of 1-hexadecanol/1-octadecanol was 2/1. The liquid crystalline phase was formed as the addition of long chain alcohol and the secondry droplet, the flocculate of the emulsion particles, was made, and thus the viscosity of the emulsion was increased. When the temperature of emulsion system was under the transition temperature of long chain alcohol, the mobility of hydrocarbon group of long chain alcohol was restricted, and thus gel structure was formed and the viscosity of the the O/W emulsion was increased, but along with the time, the liquid crystalline phase was disappeared and the viscosity of emulsion was decreased. Long chain alcohol/nonionic surfactants/water formed the liquid crystalline phase when the long chain alcohol was added above the saturation point of solution(2 wt% in this experoment), and the secondry droplet didn't formed when the long chain alcohol was added more than a certain amount (10 wt% in this experiment).

  • PDF

Mössbauer Study of Silver Nanoparticle Coated Perovskites La0.7Sr0.3Co0.3Fe0.7O3-δ (LSCF) (은(Ag) 나노입자가 코팅된 페롭스카이트 La0.7Sr0.3Co0.3Fe0.7O3-δ의 Mössbauer 분광연구)

  • Uhm, Young-Rang;Rhee, Chang-Kyu;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.2
    • /
    • pp.37-41
    • /
    • 2012
  • The Ag nanoparticles attached $La_{0.7}Sr_{0.3}Co_{0.3}Fe_{0.7}O_{3-{\delta}}$ (LSCF) perovskites were prepared by plasma method. The Ag nanoparticles with size of several nanometers deposited from the Ag target were coated on the surface of LSCF powders with size range from 0.2 to 3 ${\mu}m$. The agglomeration of Ag particles annealed at $800^{\circ}C$ under inert gas of Ar were rarely observed. The inter-diffusion between surface Ag and core LSCF is effectively strong to prevent aggregation of Ag nanoparticles. The wave number of FT-IR spectra for LSCF were largely shifted as the concentration of Ag on LSCF up to 2.11 wt.%. The ionic states of irons in LSCF were measured by M$\ddot{o}$ssbauer spectroscopy. The small amount of $Fe^{4+}$ ions are converted to $Fe^{3+}$ ions after Ag nanopartcles were coated on LSCF.