• Title/Summary/Keyword: 양변위 되먹임 제어

Search Result 9, Processing Time 0.02 seconds

Active Control of Clamped Beams using Acceleration Feedback Controllers (가속도 되먹임 제어기를 이용한 양단지지보의 능동 제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong;Jeong, Sang-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1190-1199
    • /
    • 2010
  • This paper reports active control of clamped beams using acceleration feedback controllers (AF). The equations of motion of clamped beam under force and moment pairs were derived and the equations of AF controllers were formulated. The effect of the parameters - gain and damping ratio - of the AF controllers on the open loop transfer function was investigated mainly in terms of the system stability. Increasing the gain of the AF controller tuned at a mode, the magnitude of the open loop transfer function is increased at all frequencies. The increase of the damping ratio of the AF controller leads to decrease the magnitude of the open loop transfer function and modifies its phase characteristics to be more stable. Three AF controllers connected in parallel were then proposed. Each AF controller is tuned at the 2nd, 3rd and 4th modes, respectively. Their parameters were determined to remain the system to be stable based on the results of the parametric study. A significant reduction in vibration at the 3 modes can be obtained.

Vibration Control of a Beam with a Tip Mass using a Lightweight Piezo-composite Actuator (경량 압전 복합재료 작동기를 이용한 끝단 질량이 부착된 보의 진동 제어)

  • Martua, Landong;Park, Hoon-Cheol;Goo, Nam-Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.218-224
    • /
    • 2007
  • Although piezoelectric materials such as PZT have been widely used as actuators in the field of active vibration suppression, the use of bare PZT as an actuator may cause some drawbacks such as critical breaks in the installation process, short circuits in the host material and low fatigue performance. The LIPCA-C2 (lightweight piezocomposite actuator) was developed to alleviate these problems. We implemented the LIPCA as an actuator to suppress the vibration of an aluminum cantilever beam with a tip mass. In our test, we used positive position feedback control algorithm. The filter frequency for this type of feedback should be tuned to the natural frequency of the target mode. The first three experimental natural frequencies of the aluminum cantilever beam agree well with the results of finite element analysis. The effectiveness of using the LIPCA as an actuator in active vibration suppression was investigated with respect to the time and frequency domains, and the experimental results show that LIPCAs with PPF control can significantly reduce the amplitude of forced vibrations and the settling time of free vibrations. For a case study, the forced vibration control of several beams with different thicknesses were performed.

Implementation of Auto-tuning Positive Position Feedback Controller Using DSP Chip and Microcontroller (디지털신호처리 칩과 마이크로 컨트롤러를 이용한 자동 조정 양변위 되먹임 제어기의 구현)

  • Kwak, Moon K.;Kim, Ki-Young;Bang, Se-Yoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.954-961
    • /
    • 2005
  • This paper is concerned with the implementation of auto-tuning positive position feedback controller using a digital signal processor and microcontroller. The main advantage of the positive position feedback controller is that it can control a natural mode of interest by tuning the filter frequency of the positive position feedback controller to the natural frequency of the target mode. However, the positive position feedback controller loses its advantage when mistuned. In this paper, the fast fourier transform algorithm is implemented on the microcontroller whereas the positive position feedback controller is implemented on the digital signal processor. After calculating the frequency which affects the vibrations of structure most, the result is transferred to the digital signal processor. The digital signal processor updates the information on the frequency to be controlled so that it can cope with both internal and external changes. The proposed scheme was installed and tested using a beam equipped with piezoceramic sensor and actuator. The experimental results show that the auto-tuning positive position feedback controller proposed in this paper can suppress vibrations even when the target structure undergoes structural change thus validating the approach.

Implementation of Adaptive Positive Popsition Feedback Controller Using DSP chip and Microcontroller (디지털신호처리 칩과 마이크로 컨트롤러를 이용한 적응 양변위 되먹임 제어기의 구현)

  • Kwak, Moon-K.;Kim, Ki-Young;Bang, Se-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.498-503
    • /
    • 2005
  • This paper is concerned with the implementation of adaptive positive position feedback controller using a digital signal processor and microcontroller The main advantage of the positive position feedback controller is that it can control a natural mode of interest by tuning the filter frequency of the positive position feedback controller to the natural frequency of the target mode. However, the positive position feedback controller loses its advantage when mistuned. In this paper, the fast fourier transform algorithm is implemented on the microcontroller whereas the positive position feedback controller is implemented on the digital signal processor. After calculating the frequency which affects the vibrations of structure most the result is transferred to the digital signal processor. The digital signal processor updates the information on the frequency to be controlled so that it can cope with both internal and external changes. The proposed scheme was installed and tested using a beam equipped with piezoceramic sensor and actuator. The experimental results show that the adaptive positive position feedback controller proposed in this paper can suppress vibrations even when the target structure undergoes structural change thus validating the approach.

  • PDF

Active Control of Clamped Beams Using Acceleration Feedback Controllers (가속도 되먹임 제어기를 이용한 양단지지보의 능동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong;Jeong, Sang-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.101-109
    • /
    • 2010
  • This paper reports active control of clamped beams using acceleration feedback controllers (AF). The equations of motion of clamped beam under force and moment pairs were derived and the equations of AF controllers were formulated. The effect of the parameters - gain and damping ratio - of the AF controllers on the open loop transfer function was investigated mainly in terms of the system stability. Increasing the gain of the AF controller tuned at a mode, the magnitude of the open loop transfer function is increased at all frequencies. The increase of the damping ratio of the AF controller leads to decrease the magnitude of the open loop transfer function and modifies its phase characteristics to be more stable. Three AF controllers connected in parallel were then proposed. Each AF controller is tuned at the $2^{nd}$, $3^{rd}$ and $4^{th}$ modes, respectively. Their parameters were determined to remain the system to be stable based on the results of the parametric study. A significant reduction in vibration at the 3 modes can be obtained.

  • PDF

Active Vibration Control of Multi-Mode Forced Vibration Using PPF Control Technique (PPF 제어기법을 이용한 다중 모드 강제 진동의 능동 진동 제어)

  • 한상보;곽문규;윤신일
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.1007-1013
    • /
    • 1997
  • This paper presents active vibration control scheme of multi-mode forced vibration using piezocetamic sensors and actuators. The control scheme adopted is the Positive Position Feedback (PPF) control. Among various vibration control techniques. PPF control technique makes use of generalized displacement measurements to accomplish the vibration suppression. Two independent controllers are implemented to control the first and the second modes of the beam under external excitation. Experimental results for various damping ratios and feedback gains of the PPF controllers are compared with respect to the contorl efficiency. The results indicate that steady state vibration under wide band excitation can be controlled effectively when multiple sets of PZT sensors and actuators were used with PPF control technique.

  • PDF

The Stability Conditions, Performance and Design Methodology for the Positive Position Feedback Controller (양변위 되먹임 제어기의 안정성, 제어 성능 및 설계 방법)

  • Kwak, Moon-Kyu;Han, Sang-Bo;Heo, Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.208-213
    • /
    • 2004
  • This paper is concerned with the theoretical estimation of the single-input single-output(SISO) positive position feedback(PPF) controller and the derivation of the stability conditions for the multi-input multi-output (MIMO) PPF controller. Although the stability condition for the SISO PPF controller was derived in the earlier works, the question regarding the performance estimation of the SISO PPF controller has never been studied theoretically. Hence, the SISO PPF controller for the single degree-of-freedom system was first investigated and then control parameters including gain, the filter frequency, and the damping factor of the PPF controller were analyzed in detail thus providing the design methodology for the SISO PPF controller. In the case of real structure. there are infinite number of natural modes so that some modes are to be controlled by a limited number of actuator and sensor. Based on the theoretical results on the SISO PPF controller, the stability condition for the multi-input multi-output PPF controller was derived when only the few number of modes are to be controlled. The control spillover problem is also discussed in detail.

Active Noise Control Using Sensory Actuator (자기감응 액추에이터를 이용한 능동소음제어)

  • Go, Byeong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1573-1581
    • /
    • 1996
  • This paper present as experimental demonstratio of DSP and a sensory actuator that is used to actively control sound transmission/radiation through a vibrating plate. A plane acoustic wave incident on a clamped, thin circular plate was used as a noise source, and a sensory actuator bounded to the plate was used to control and sense vibration of the plate. The sound transmission reduction problem was tranformed as a structural vibration control problem that actively control the structural vibration modes coupled to acoustic modes. The results show that the first structural vibration mode is controlled with a reduction of 78 percent in the displacement and velocity of the plate. This corresponds to a 13dB reduction in the acoustic response. These experimental results indicate that a sensory actuator bounded to the plate can be employed to attenuate the sound transmitted to radiated from the plate.

Positive Position Feedback Control of Plate Vibrations Using Moment Pair Actuators (모멘트쌍 액추에이터가 적용된 PPF에 의한 평판의 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong;You, Ho-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.383-392
    • /
    • 2012
  • This paper reports the active vibration control of plates using a positive position feedback(PPF) controller with moment pair actuators. The equations of motion of the plates under a force and moment pairs are derived and the equations of PPF controllers are formulated. The numerical active control system is then achieved. The effect of the parameters - gain and damping ratio - of the PPF controllers on the open loop transfer function was investigated mainly in terms of the system stability. Increasing the gain of the PPF controller tuned at a mode, the magnitude of the open loop transfer function is increased at all frequencies without changing the phase behavior. The increase of the damping ratio of the PPF controller leads to decrease the magnitude of the open loop transfer function and to modify its phase characteristics, ie, system stability. Based on the behavior of the gain and the damping ratio of the controller, PPF controller for reduction of the plate vibration can be achieved. Two PPF controllers are designed with their connection in parallel to control the two modes simultaneously. Each PPF controller is tuned at the $1^{st}$ and $2^{nd}$ modes, respectively. Their parameters were determined to remain the system to be stable based on the results of the parametric study. A significant reduction in vibration at the tuned modes can be obtained.