• 제목/요약/키워드: 양극재료

검색결과 376건 처리시간 0.024초

고상법으로 제조한 $LiFePO_4$/C 양극의 전기화학적 특성

  • 안정훈;감대웅;황동현;손영국
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.306-306
    • /
    • 2010
  • 일반적으로 가장 많이 사용되고 있는 양극재료 가운데 $LiCoO_2$는 비교적 용량이 크고, 우수한 수명특성의 장점을 가지고 있는 반면, 단점으로 원재료의 높은 가격과 독성이 있으며, 열적으로 불안정하다. 반면, 원재료의 높은 가격과 독성, 열적 불안정성은 단점으로 지적된다. 이러한 단점을 극복할 수 있는 양극재료로 원료 가격이 저렴하고 높은 용량(170 mAh/g)과 열적으로 안정한 올리빈 구조를 형성하고 있는 $LiFePO_4$가 가장 이상적으로 고려되어져 왔다. 하지만 낮은 이온, 전기전도도 때문에 다양한 연구가 이루어졌다. 특성향상을 위한 연구가 필요하며, 다양한 전이금속의 도핑과 카본 코팅을 통하여 전기전도도의 향상과 함께 구조적으로도 리튬 이온의 확산을 더 용이하게 한다는 결과가 최근 보고되어 있다. 최근 다양한 전이금속의 도핑과 카본코팅을 통하여 전기전도도의 향상과 함께 구조적으로도 리튬이온의 확산을 더 용이하게 한다는 결과가 보고되어 있다. 본 연구에서는 고상반응법을 이용하여 $LiFePO_4$를 합성하였고, 카본소스를 첨가하여 전기전도도의 향상과 함께 높은 용량의 $LiFePO_4$/C양극재료를 합성하였다. 제조된 분말은 XRD 회절시험을 통하여 결정구조를 분석 하였으며, SEM을 이용하여 분말의 형상과 크기를 관찰 하였고, 또한 전기화학적 특성도 평가하였다.

  • PDF

고용량 양극재료 개발을 위한 연소법에 의한 $LiNi_{1-y}M_yO_2(M=Al,\;Zn\;and\;Ti)$의 합성과 전기화학적 특성에 관한 연구 (Study on the Synthesis by the Combustion Mettled and the Electrochemical Properties of $LiNi_{1-y}M_yO_2(M=Al,\;Zn\;and\;Ti)$ for the Development of Cathode Material with Large Discharge Capacity)

  • 권익현;김훈욱;송명엽
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2004년도 수소연료전지공동심포지움 2004논문집
    • /
    • pp.293-296
    • /
    • 2004
  • 고용량 $LiNi_{1-y}M_yO_2$(M=Al, Zn and Ti, y=0.000, 0.005, 0.010, 0.025, 0.050 and 0.100) 양극재료를 합성하기 위하여 연소법을 사용하였다. 합성한 시료들을 X-선회절 분석, 미세구조관찰, 전자침미세분석(EPMA)을 하였다. battery 충${\cdot}$방전기를 사용하여 리튬의 삽입${\cdot}$추출 반응으로 인하여 나타나는 충${\cdot}$방전 곡선의 변화를 조사하였고, 합성한 각 시편에 대해 충${\cdot}$방전 싸이클 수에 따른 방전용량의 변화를 조사하였다. XRD pattern 분석결과 모든 조성에서 $R\bar{3}m$ 구조를 보여주었다. Ni 자리에 Al, Zn, Ti를 치환한 결과 방전용량은 감소하였으나 M=Al 시료는 싸이클 특성이 증가하였다.

  • PDF

양극산화 알루미늄 템플레이트를 이용한 탄소나노튜브의 성장 (Growth of carbon nanotubes on AAO nanotemplate)

  • 최성헌;이재형;홍병유;최원석
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.146-147
    • /
    • 2006
  • 본 논문에서 탄소나노튜브의 성장 제어를 위해 양극산화 알루미늄 템플레이트를 사용하였다. Si 기판위에 TiN과 Ni 층을 순서대로 증착하였으며 알루미늄을 그 위에 증착하였다. 또한 양극산화 과정은 수산법을 이용하였고 탄소나노튜브의 성장은 마이크로웨이브 플라즈마 화학기상증착법을 이용하여 성장하였다. 양극산화 알루미늄 층 과 탄소나노튜브의 관찰을 위해서 FE-SEM 을 사용하였으며 성장된 탄소나노튜브의 직경은 40 nm 이고 길이는 약 $1\;{\mu}m$ 내외로 확인되었다.

  • PDF

양극 산화법을 이용한 나노 채널 구조의 주석 산화물 제조

  • 박수진;신헌철
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.30.2-30.2
    • /
    • 2011
  • 나노 채널 구조는 반응 물질의 빠른 확산 경로를 제공하고, 넓은 반응 활성화 면적을 가지므로, 센서, 촉매, 전지 등의 다양한 기능성 전기 화학 소자용 고효율 전극 구조로서 관심을 받고 있다. 최근 양극 산화법을 이용하여, 자가 배열된 나노 채널 구조의 주석 산화물을 형성시키는 연구가 진행되고 있다. 그러나, 기재위에 도금된 주석 박막이 양극 산화에 의해 산화물로 변화하는 과정에서 내부 균열 및 표면 기공의 막힘 현상이 관찰되고, 기재 위 주석의 산화가 완료되는 시점에서는 기재의 산화 및 산소 발생에 의한 기계적 충격 등으로 인해 산화물이 기재로부터 탈리되는 문제가 발생하여, 그 응용 연구가 크게 제한되어 있는 실정이다. 본 연구에서는 다공성 주석 산화물 합성 시의 구조적 결함이 나타나는 이유에 대해 체계적으로 분석하고, 이를 바탕으로 결함이 없는 나노 채널 주석 산화물을 제조하는 방법을 제시하였다. 또한, 주석 산화물 박막을 기능성 전기화학 소자용 전극 활물질, 특히 리튬 전지용 음극재료로 사용하기 위한 효과적인 전극 제조 방법에 대해 논의하고, 그에 따라 제조된 전극의 충방전 용량, 사이클링 안정성 등을 제시하였다.

  • PDF

GNP 방법에 의한 Thermal Battery용 양극 재료 $CaCrO_4$분말 합성 및 Ca/LiCl-KCl/$CaCrO_4$전지계의 전기 화학적인 특성 평가 (Synthesis of $CaCrO_4$Powders for the Cathode Material of Thermal Battery by GNP and Electrochemical Properties of Ca/LiCl-KCl/$CaCrO_4$Thermal Battery System)

  • 이현주;김영석;김선재;이창규;김홍회;김길무
    • 한국세라믹학회지
    • /
    • 제38권2호
    • /
    • pp.143-151
    • /
    • 2001
  • Ca/LiCl-KCl/CaCrO$_4$열 전지계의 양극재료로서 BCT(Body-Centered Tetragonal) 결정구조를 갖는 CaCrO$_4$분말을 GNP로 합성하고, SEM, TEM, XRD를 이용하여 그 미세구조를 분석하였다. GNP 공정에 의한 CaCrO$_4$분말은 단일상으로 0.5$mu extrm{m}$ 이하의 입자 크기를 가지며 균일하게 분포한 반면, 기존의 분말 혼합법은 높은 하수 온도 및 장시간의 하소 조건을 필요하므로 미세한 분말 합성이 어렵고 pellet 형태로 만들었을 때 GNP 분말에 비해 비표면적이 현저하게 작기 때문에 전극 재료로써 유리하지 못하다. Ca/LiCl-KCl/CaCrO$_4$계의 전기 화학적인 특성을 평가해본 결과 전지셀을 Ca/DEB(LiCl-KCl+CaCrO$_4$+SiO$_2$)와 같은 DEB 형태로 만들었을 때 $600^{\circ}C$의 온도에서 2.0 V이상 (<100 mA/㎤)의 안정한 전압이 5분 이상 유지되었다. 그러나 3층 전극 셀(Ca/LiCl/KCl/ CaCrO$_4$)에서는 동일한 온도에서 2.0 V이상 (<100 mA/㎤)의 전압이 7분 이상 유지되었으나 불안정한 전압 변동 및 낮은 peak voltage로 인해 DEB 셀의 전지 특성이 더 우수한 것으로 생각된다. 양극 재료의 제조 방법의 관점에서 볼 때, 동일한 DEB(Depolarizer : Electrolyte : Binder=25 : 70 : 5 wt%) 조성의 셀 구성시, GNP 분말은 분말 혼합법에 의한 분말보다 반응 표면적이 훨씬 크기 때문에 GNP 양극 활 물질의 DEB 셀에서의 전지 수명이 더 길었다.

  • PDF

그라핀이 코팅된 저탄소강의 고분자전해질 연료전지 양극판으로서의 적용

  • 남대근;김정수;박영도;오원태;조형호
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.44.2-44.2
    • /
    • 2011
  • 고분자 전해질 연료전지는 다른 연료전지에 비해 작동온도가 낮고 전류밀도 및 출력밀도가 높으며 시동시간이 짧아서 다양한 분야에 응용이 가능할 것으로 기대된다. 그 중 양극판은 가격비와 중량비가 높아 부품 가격 및 중량을 낮출 경우 파급 효과가 높은 것으로 예상된다. 본 연구에서는 일반적으로 사용하고 있는 스테인리스강보다 가격이 저렴한 저탄소강을 모재로 이용하였다. 저탄소강은 자체로 내식성을 가지지 못하므로, 최근에 차세대 신소재로 각광을 받고 있는 그라핀(graphene)을 전기분무(electro spray coating)법으로 코팅하여 저탄소강의 내식성을 향상시키고자 하였다. 그라핀은 에탄올을 용매로 사용하여 분산하였으며, 분산제로 소량의 다이페닐다이에톡시실란(diphenyldiethoxysilane)을 첨가하여 코팅용액을 제작하였다. 코팅공정은 5~15 kV의 전압을 가하여 1시간동안 코팅을 진행하였으며, 그라핀-저탄소강의 미세구조를 주사전자현미경과 광학현미경을 통하여 관찰하였다. 또한 X-선 회절분석법을 이용하여 그라핀의 결정구조를 분석하였다. 한편 스택의 내부와 유사한 산화성 분위기를 모사하기 위해 $80^{\circ}C$의 0.1N $H_2SO_4$+2ppm $F^-$ 용액에서 내식성 실험을 수행하였고 면간접촉저항을 측정하였다. 그라핀이 코팅된 저탄소강 시편은 고분자 전해질 연료전지 양극판의 요구조건을 만족하였으며, 연료전지 양극판으로서의 사용가능성을 확인하였다.

  • PDF

리튬이온전지(Lithium Ion Battery) 양극 물질 연구동향 (Research Trends of Cathode Materials for Next Generation Lithium Ion Battery)

  • 나성민;박현규;김선욱;조혁희;박광진
    • 공업화학전망
    • /
    • 제23권1호
    • /
    • pp.3-17
    • /
    • 2020
  • 리튬이온전지(LIB)는 기존의 다른 이차전지와 다른 확실한 몇 가지 장점이 있다. 높은 작동 전압과 높은 에너지 밀도, 긴 수명, 그리고 낮은 자체 방전 속도이다. 이러한 장점으로 모바일 제품에서부터 전기 자동차(battery electric vehicle, BEV), 최근에는 전기저장장치(energy storage system, ESS)까지 다양한 분야에서 사용되고 있다. 하지만 사용 범위가 증가함에 따라 높은 안정성을 가지며 더 큰 에너지 용량을 나타내는 리튬이온전지에 대한 요구가 점점 더 커지게 되었다. 리튬이온전지의 용량 증가는 전지의 설계보다는 양극 및 음극 재료, 분리막 및 전해질과 같은 주요 전지 재료의 기술적 진보에 달려 있다. 주요 전지 소재 중에 전지의 성능에 가장 큰 영향을 미치는 것은 전지 반응에 의한 과전압과 가격이 가장 비싼 양극이다. 본 기획 특집에서는 리튬이차전지의 성능에 가장 큰 영향을 미치는 양극 물질의 종류와 향후 연구동향에 대해서 소개하고자 한다. 양극 물질의 발전 방향, 안정성과 용량 증대를 위해서 최근 연구되고 있는 방향에 대해서 자세하게 소개한다.

리튬이차전지용 양극재 개발 동향 (The Research and Development Trend of Cathode Materials in Lithium Ion Battery)

  • 박홍규
    • 전기화학회지
    • /
    • 제11권3호
    • /
    • pp.197-210
    • /
    • 2008
  • 리튬이차전지용 양극재는 전지 성능발전과 더불어 다양하게 발전되어 왔다. 처음으로 채용된 $LiCoO_2$는 초기의 부족한 성능을 도핑이나 표면개질이라는 기술을 채용하여 지속적인 발전을 거듭하면서 최근 4.3V에 가까운 충전전압에서도 적용 가능하게 되었다. 한편으로 응용기기가 복잡해지면서 요구되는 특성도 한층 강화되었다. 높은 작동전압 뿐만 아니라 고용량이 요구되면서 새로운 재료에 대한 연구개발이 시작되었고, 그 중에서도 ${LiNi}_{1-x}{M_xO_2}$, $Li[Ni_{x}Mn_{y}Co_{z}]O_{2}$, $Li[{Ni}_{1/2}{Mn}_{1/2}]O_{2}$등 다양한 재료들이 개발되기에 이르렀다. 최근에는 고유가에 따라 전기자동차용 개발이활발해지면서 고안전성의 새로운 재료가 필요하게 되었고, 이러한 요구에 수렴하여 ${LiMn_2}{O_4}$, $LiFePO_4$와 같은 안전성이 매우 우수한 재료가 개발되었다. 향 후 양극재 부분은 이외에도 다양한 상들이 고용량과 동시에 안전성이 뛰어난 고용체를 이루고 있는 복합체 양극재를 비롯하여 다양한 재료들이 개발될 것으로 여겨진다.