• 제목/요약/키워드: 양극성 양극산화

검색결과 288건 처리시간 0.025초

H-브리지를 이용한 양극성 금속표면 양극산화장치 개발에 관한 연구 (A study on development of bipolar metal surface anodizing equipment using H-bridge)

  • 양근호
    • 한국전자통신학회논문지
    • /
    • 제6권3호
    • /
    • pp.355-362
    • /
    • 2011
  • 본 논문에서는 특정 용액 내에서 전기분해 원리를 이용하여 금속 표면을 산화시켜 절연피막을 형성하는 장치를 개발한다. 기존에는 주로 양극에만 펄스 형태로 전압을 인가하는 단극성(unipolar) 방식이지만 본 논문에서는 H-브리지를 이용하여 양극에 양(+)전압과 음(-)전압을 번갈아 가면서 공급을 하는 양극성(bipolar) 장치를 제작하여 실험하였다. 공급전류 가변은 PWM 변조를 이용하였으며, (+)와 (-)의 극성변화는 H-브리지를 이용하여 양극성 펄스전압을 공급할 수 있도록 하였다. 그 결과로써 단극성보다 균일한 기공을 갖는 피막이 형성되었다.

인산용액에서 양극산화 인가전압에 따른 알루미늄 산화피막 성장 관찰 (Observation of Diverse Aluminum Oxide Structures in a Phosphoric Acid Solution according to the Applied Anodization Voltage)

  • 정찬영
    • 마이크로전자및패키징학회지
    • /
    • 제26권1호
    • /
    • pp.35-39
    • /
    • 2019
  • 현재까지 다공성 알루미나 구조물은 대표적으로 양극산화 방법으로 구현되어 오고 있다. 양극산화 방법을 통해 규칙적인 배열을 가진 알루미늄 산화 피막은 쉽게 만들 수 있지만, 복합 구조물 형태를 가진 산화피막은 상대적으로 구현하기가 어렵다. 본 연구는 인산용액에서 양극산화 인가전압에 따른 피막 기공 크기, 두께 및 구조물 형태 변화를 관찰하고자 한다. 다층 복합 산화물 구조물 구현을 위해 양극산화 인가전압 조건을 조절하였고, 실험 조건은 10% 인산용액에서 양극산화 인가전압 100 V와 120 V로 각각 수행하였다. 실험 결과는 각 조건에 따라 다공성 구조물과 복합 구조물 형태의 산화물 구조를 구현할 수 있었다.

고온 글리세롤 전해질에서 양극산화를 이용한 나노구조 스테인리스 스틸 산화막의 형성 (Formation of Porous Oxide Layer on Stainless Steel by Anodization in Hot Glycerol Electrolyte)

  • 이재원;최현국;김문갑;이영세;이기영
    • 공업화학
    • /
    • 제31권2호
    • /
    • pp.215-219
    • /
    • 2020
  • 본 연구에서는 304 계열의 스테인리스 스틸을 양극산화 하여 다공성 나노구조의 스테인레스 스틸 산화막을 형성하였다. 양극산화를 위한 전해질로 K2HPO4가 포함되어있는 글리세롤을 사용하다. 양극산화 시 전해질의 농도, 전해질의 온도, 인가전압과 같은 다양한 변수들에 의하여 산화물의 나노구조가 제어되었다. K2HPO4 전해질 농도에 따른 산화막 형성을 비교했을 때 10 wt%의 전해질 농도에서 산화막 형성이 가장 잘 이루어졌다. 120~180 ℃ 범위에서의 전해질 온도에 따른 양극산화를 비교하였을 때 160 ℃에서 균일한 다공성 구조의 스테인레스 스틸 금속 산화물이 형성됨을 확인하였다. 인가전압에 따른 금속 산화물 형성은 전해질 온도에 밀접한 관계가 있음을 밝혀냈다. 본 연구를 통하여 전해질의 농도, 온도 및 인가전압에 따른 산화물의 형성과 용해 반응이 평형을 이루었을 때 가장 정렬도가 높은 다공성 구조의 스테인레스 스틸 산화막을 형성할 수 있음을 밝혔다.

피로인산 전해질에서 양극산화를 통한 알루미늄 3104 합금 나노섬유 산화물 형성 (Formation of Anodic Al Oxide Nanofibers on Al3104 Alloy Substrate in Pyrophosphoric Acid)

  • 김태완;이기영
    • 전기화학회지
    • /
    • 제24권1호
    • /
    • pp.7-12
    • /
    • 2021
  • 본 연구에서는 산업에서 많이 이용되는 알루미늄 3104H18 금속을 양극산화하여 다공성 나노구조 및 나노섬유 구조의 알루미늄 산화막을 형성하였다. 양극산화를 위한 전해질은 피로인산(H4P2O7)과 증류수를 혼합하여 사용하였다. 양극산화 진행 시 전해질의 농도, 온도, 인가전압과 같은 다양한 변수를 통해 다공성 알루미늄 산화막과 나노섬유 구조를 형성할 수 있었다. 나노섬유 구조를 형성하기 위해서는 피로인산 전해질 농도가 75 wt%, 인가전압이 30 V, 20℃의 양극산화 온도가 최적 조건임을 밝혀냈다. 인가전압이 40 V 이상이 되었을 때는 산화물의 용출속도의 증가 또는 높아진 전압으로 인한 채널벽의 두께증가로 인하여 다공성 나노구조의 형태가 나타난다는 것을 확인했다. 본 연구를 통하여 전해질의 농도, 인가전압 및 온도에 따른 산화물의 형성 및 용해반응이 평형을 이루었을 때 가장 나노섬유가 잘 형성된 알루미늄 산화막을 형성할 수 있음을 밝혔다.

유연하고 얇은 알루미늄 포일을 사용한 다공성 알루미나 막 제작 (Fabrication of Porous Aluminum Oxide Using Flexible Thin Aluminum Foils)

  • 박영옥;김승우;고태준
    • 한국자기학회지
    • /
    • 제17권2호
    • /
    • pp.90-94
    • /
    • 2007
  • 유연하고 얇은 0.025 mm와 0.2 mm의 두께를 지닌 알루미늄 포일을 사용하여 다공성 알루미나 막을 제작하였다. 알루미늄 포일들은 에탄올/과염소산 용액에서 전해연마하여 표면처리를 하였으며, 0.3 M의 옥살산 용액 안에서 양극산화 시켰다. 양극산학 시용액의 온도는 $9^{\circ}C$로 유지시켰으며, 전극에 가해주는 전압을 0.4와 40 V 사이에서 변화시킨 후, 형성된 알루미나 막의 표면을 주사전자현미경으로 관찰하였다. 관찰 결과, 장시간의 양극 산화 시 사용되는 전압의 크기가 1 V 이상일 경우 강한 전기분해 반응으로 인해 생성된 산화막 표면이 파괴되어 있음을 확인할 수 있었다. 반면 1 V 이하로 처리할 경우, 장시간에 걸쳐 안정적으로 양극산화시킬 수 있음을 알 수 있었다. 이 실험을 통해 얇은 알루미늄 포일의 경우 두꺼운 알루미늄 판과 달리 장시간의 양극산화를 통해 다공성 알루미나 막을 형성하기 위해선 1 V 이하의 낮은 전압이 요구되는 것을 확인할 수 있었다.

유기 태양전지 성능 향상을 위한 정렬된 금속 나노 배열 최적화

  • 배규영;임동환;김경식
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.410.2-410.2
    • /
    • 2014
  • 유기 태양전지는 높은 활용성에 비해 태양광 발전 효율이 저조해서 현재까지는 널리 상용화 되고 있지 못하다. 이를 극복하기 위해 유기 태양전지의 ITO 기판 위에 플라즈모닉 효과를 주는 금속을 배열해 태양광발전 효율을 향상시키는 연구가 최근까지 계속 되어 왔다. 나노 사이즈의 작은 금속에서 발생하는 플라즈모닉 효과는 액티브 층(active layer)에 영향을 끼쳐 발전 효율을 증가시킬 수 있다. 나노 크기의 금속의 배열은 양극산화 알루미늄 마스크를 이용해서 증착이 가능하고, 나노 금속 배열의 구조는 양극산화 알루미늄 마스크를 제작할 때 공정조건을 바꾸어 조절할 수 있다. 본 연구에서는 양극산화 알루미늄 마스크의 공정조건을 바꿈으로써 마스크 형태를 조절할 수 있는 점을 이용하여, 유기 태양전지의 효율을 향상시킬 수 있는 금속의 나노 배열의 최적화 구조를 시뮬레이션을 이용해 찾는 연구를 진행하였다.

  • PDF

양극산화 기술을 이용한 금속산화물 나노구조 제조 및 응용 동향 (Technology Trends in Fabrication of Nanostructures of Metal Oxides by Anodization and Their Applications)

  • 최진섭;이재광;임재훈;김성중
    • 공업화학
    • /
    • 제19권3호
    • /
    • pp.249-258
    • /
    • 2008
  • 규칙적으로 배열되어 있는 나노크기의 기공을 가지고 있는 다공성 알루미나는 최근 응용범위의 확대 때문에 많은 관심을 끌고 있다. 이러한 다공성 알루미나를 제조하는 기본 원리는 제한된 조건하에서 금속을 양극산화 시키는 것이다. 전기화학적 양극산화에 의한 다공성 구조 제어 및 성장 메커니즘에 대한 연구는 최근 알루미늄에서부터 다른 부동태금속으로 확대되었으며 특히 최근에는 타이타늄 산화물 나노구조 제어에 성공적으로 적용되었다. 본 총설에서는 알루미늄의 양극산화 원리를 기술하고 최근 연구되어 있는 타이타늄 및 다른 부동태 금속에 적용되는 양극산화 기술의 흐름을 다룬다.

2 단계 양극 산화를 이용한 ZrO2 나노 다공성 산화막의 제조와 특성에 관한 연구 (Fabrication and Characterization Nano Porous Anodic ZrO2 Membranes by Two-Step Anodizing)

  • 서의영;최세경;신익수;강위경
    • 대한화학회지
    • /
    • 제57권5호
    • /
    • pp.547-553
    • /
    • 2013
  • 전해연마를 한 지르코늄(Zr)을 가지고 $F^-$ 이온이 함유된 무기 전해질과 유기 전해질에서 2 단계 양극산화를 진행하여 산화 지르코늄($ZrO_2$) 나노 다공성 산화막을 제조하였다. 2 단계 양극산화를 진행하면서 무기 전해질에서보다 유기 전해질에서 만들어진 지르코늄 산화막이 보다 균일한 나노 다공성 산화막을 가지게 되었다. 나노 다공성 산화막의 크기와 구조는 FE-SEM(field emission scanning electron microscopy), XRD(X-ray diffraction), EDS(energy dispersive spectroscopy)를 이용하여 특성을 분석하였고 형광스펙트럼을 측정하여 $ZrO_2$ 나노 다공성 산화막의 형광성을 알아보았다.

수산전해액하에서 양극산화에 의한 무기 UF막의 제조 (Preparation of Inorganic Ultrafiltration Membrane by Anodic Oxidation in Oxalic Acid)

  • 이창우;홍영호;장윤호;함영민
    • 공업화학
    • /
    • 제9권4호
    • /
    • pp.536-541
    • /
    • 1998
  • 본 연구에서는 시판용 99.8% 금속알루미늄을 수산전해액에서 정전류 방식에 의하여 양극산화하여 다공성 알루미나 막을 제조하는 실험을 행하였다. 전기화학 반응은 표면반응으로 양극산화에 앞서 알루미늄판을 열산화, 화학연마 및 전해연마 등의 전처리를 행하였으며, 반응온도, 전기량, 수산전해질 농도 및 전류밀도의 변화에 따라 양극산화를 시행하여 형성된 다공성 알루미나 막의 세공크기와 분포, 세공밀도 및 막와 두께를 조사하였다. 양극산화에 의해 제조된 다공성 알루미나 막의 기하구조는 직선적인 원통형 세공을 가지며, 세공직경이 45~100 nm 범위로 세공분포가 매우 균일하고, 세공밀도가 $10{\sim}30{\times}10^8$개/$cm^2$로 우수한 세라믹막의 특성을 갖는 한외여과막을 제조할 수 있었다.

  • PDF

양극 산화법을 이용한 나노 채널 구조의 주석 산화물 제조

  • 박수진;신헌철
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.30.2-30.2
    • /
    • 2011
  • 나노 채널 구조는 반응 물질의 빠른 확산 경로를 제공하고, 넓은 반응 활성화 면적을 가지므로, 센서, 촉매, 전지 등의 다양한 기능성 전기 화학 소자용 고효율 전극 구조로서 관심을 받고 있다. 최근 양극 산화법을 이용하여, 자가 배열된 나노 채널 구조의 주석 산화물을 형성시키는 연구가 진행되고 있다. 그러나, 기재위에 도금된 주석 박막이 양극 산화에 의해 산화물로 변화하는 과정에서 내부 균열 및 표면 기공의 막힘 현상이 관찰되고, 기재 위 주석의 산화가 완료되는 시점에서는 기재의 산화 및 산소 발생에 의한 기계적 충격 등으로 인해 산화물이 기재로부터 탈리되는 문제가 발생하여, 그 응용 연구가 크게 제한되어 있는 실정이다. 본 연구에서는 다공성 주석 산화물 합성 시의 구조적 결함이 나타나는 이유에 대해 체계적으로 분석하고, 이를 바탕으로 결함이 없는 나노 채널 주석 산화물을 제조하는 방법을 제시하였다. 또한, 주석 산화물 박막을 기능성 전기화학 소자용 전극 활물질, 특히 리튬 전지용 음극재료로 사용하기 위한 효과적인 전극 제조 방법에 대해 논의하고, 그에 따라 제조된 전극의 충방전 용량, 사이클링 안정성 등을 제시하였다.

  • PDF