Browse > Article
http://dx.doi.org/10.4283/JKMS.2007.17.2.090

Fabrication of Porous Aluminum Oxide Using Flexible Thin Aluminum Foils  

Park, Young-Ok (Department of Physics, Kookmin University)
Kim, Seung-Woo (Department of Physics, Kookmin University)
Kouh, Tae-Joon (Department of Physics, Kookmin University)
Abstract
We have fabricated porous aluminum oxide using flexible and thin aluminum foils with thickness of 0.025 and 0.2 mm. These foils were anodized with 0.3 M oxalic acid solution after being electropolished with ethanol/perchloric acid. During the anodization, the temperature of the electrolyte was maintained at $9^{\circ}C$ and the anodization voltage was varied between 0.4 and 40 V The surface of the anodized aluminum oxide was studied with a scanning electron microscope. From the scanning electron micrograph, we observed that when the voltage applied was above 1 V for a long period of time, due to a strong electrolysis reaction in electrolyte, the surface of the anodized oxide was destroyed. However, when the anodization voltage was less than 1 V, the anodization process was very stable and lasted much longer. Our results show that for a thin aluminum foil, unlike a thick plate, one requires small anodization voltage less than 1 V to form a porous aluminum oxide for long anodization time.
Keywords
porous aluminum oxide; anodization; aluminum foil;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. D. Wang, K. Y. Zang, S. J. Chua, and C. G. Fonstad, Appl. Phys. Lett., 89, 241922 (2006)   DOI   ScienceOn
2 J. Liang, H. Chik, A. Yin, and J. Xu, J. Appl. Phys., 91, 2544 (2002)   DOI   ScienceOn
3 F. Keller, M. S. Hunter, and D. L. Robinson, J. Electrochem.Soc., 100, 411 (1953)   DOI
4 G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Gode, Nature, 272, 433 (1978)   DOI
5 H. Masuda and K. Fukuda, Sience, 268, 1466 (1995)   DOI   ScienceOn
6 G. Patermarakis and K. Moussoutzanis, J. Electrochem. Soc., 142, 737 (1995)   DOI
7 C.-Y. Chen, S.-Y. Chen, and D.-M. Liu, Acta Mater., 47, 2717 (1999)
8 G. E. Thompson, Thin Solid Films, 297, 192 (1997)   DOI   ScienceOn
9 W. Lee, R. Ji, U. Gosele, and K. Nielsch, Nature Mat., 5, 741 (2006)   DOI   ScienceOn
10 J. Li, C. Papadopoulos, J. M. Xu, and M. Moskovits, Appl. Phys. Lett., 75, 367 (1999)   DOI
11 J. S. Suh and J. S. Lee, Appl. Phys. Lett., 75, 2047 (1999)   DOI
12 H. J. Fan, W. Lee, R. Scholz, A. Dadgar, A. Krost, K. Nielsch, and M. Zacharias, Nanotechnology, 16, 913 (2005)   DOI   ScienceOn
13 N. Pavenayotin, M. D. Stewart, Jr., J. M. Valles, Jr., A. Yin, and J. M. Xu, Appl. Phys. Lett., 87, 193111 (2005)   DOI   ScienceOn
14 M. D. Stewart, Jr., Z. Long, J. M. Valles, Jr., A. Yin, and J. M. Xu, Physical Review B, 73, 092509 (2006)   DOI   ScienceOn
15 D. Gong, V. Yadavalli, M. Paulose, M. Pishko, and C. A. Grimes, Biomed. Microdevices, 5, 75 (2003)   DOI   ScienceOn
16 S. Kipke and G. Schmid, Adv. Funct. Mater., 14, 1184 (2004)   DOI   ScienceOn
17 A. P. Lee, F. Muller, A. Birner, K. Nielsch, and U. Gosele, J. Appl. Phys., 84, 6023 (1998)   DOI   ScienceOn
18 C. Brandi, T. F. Jaramillo, A. Ivanovskaya, and E. W. McFarland, Electrochem. Acta, 47, 553 (2001)   DOI   ScienceOn
19 J. Park and S.-W. Ryu, Sae Mulli, 52, 232 (2006)