• Title/Summary/Keyword: 약 지도 학습

Search Result 416, Processing Time 0.026 seconds

Automatic Evaluation of Elementary School English Writing Based on Recurrent Neural Network Language Model (순환 신경망 기반 언어 모델을 활용한 초등 영어 글쓰기 자동 평가)

  • Park, Youngki
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.2
    • /
    • pp.161-169
    • /
    • 2017
  • We often use spellcheckers in order to correct the syntactic errors in our documents. However, these computer programs are not enough for elementary school students, because their sentences are not smooth even after correcting the syntactic errors in many cases. In this paper, we introduce an automated method for evaluating the smoothness of two synonymous sentences. This method uses a recurrent neural network to solve the problem of long-term dependencies and exploits subwords to cope with the rare word problem. We trained the recurrent neural network language model based on a monolingual corpus of about two million English sentences. In our experiments, the trained model successfully selected the more smooth sentences for all of nine types of test set. We expect that our approach will help in elementary school writing after being implemented as an application for smart devices.

Comparative Analysis of Teachers' PCK and Their Educational Practice about Fraction (분수에 대한 교사의 PCK와 수업 실제의 비교 분석)

  • Kim, Bo-Min;Ryu, Sung-Rim
    • School Mathematics
    • /
    • v.13 no.4
    • /
    • pp.675-696
    • /
    • 2011
  • This study was designed to understand PCK to improve professionalism of teachers and derive implications about proper teachings methods. For achieving these research purposes, different PCK and teaching methods in class of three teachers were compared and analyzed targeting arithmetic operation unit of fraction. For this study, criteria of PCK analysis of teachers was set, PCK questionnaires were produced and distributed, teachers had interviews, PCK of teachers were analyzed, two times fraction class was observed and analyzed, and PCK of teachers and their classes were compared. Followings are results to analyze PCK of teachers about fraction. In relation to PCK of three teachers, first of all, A teacher accurately understood concepts of fraction and learners' errors that may occur when they study fraction. Also, he(she) proposed concrete teaching strategies for fraction based on manipulated materials. B teacher also understood concepts of fraction and learners' errors accurately too. On the other hand, C teacher laid stress on knowledge to stress principles and taught that they are bases for every class. These results mean that self-training and inservice- training should be efficiently upgraded to improve PCK of teachers.

  • PDF

Electrical Arc Detection using Convolutional Neural Network (합성곱 신경망을 이용한 전기 아크 신호 검출)

  • Lee, Sangik;Kang, Seokwoo;Kim, Taewon;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.25 no.4
    • /
    • pp.569-575
    • /
    • 2020
  • The serial arc is one of factors causing electrical fires. Over past decades, various researches have been carried out to detect arc occurrences. Even though frequency analysis, wavelet, and statistical features have been used, additional steps such as transformation and feature extraction are required. On the contrary, deep learning models directly use the raw data without any feature extraction processes. Therefore, the usage of time-domain data is preferred, but the performance is not satisfactory. To solve this problem, subsequent 1-D signals are transformed into 2-D data that can feed into a convolutional neural network (CNN). Experiments validated that CNN model outperforms deep neural network (DNN) by the classification accuracy of 8.6%. In addition, data augmentation is utilized, resulting in the accuracy improvement by 14%.

A Study on the Korean Continuous Speech Recognition using Adaptive Pruning Algorithm and PDT-SSS Algorithm (적응 프루닝 알고리즘과 PDT-SSS 알고리즘을 이용한 한국어 연속음성인식에 관한 연구)

  • 황철준;오세진;김범국;정호열;정현열
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.6
    • /
    • pp.524-533
    • /
    • 2001
  • Efficient continuous speech recognition system for practical applications requires that the processing be carried out in real time and high recognition accuracy. In this paper, we study the acoustic models by adopting the PDT-SSS algorithm and the language models by iterative learning so as to improve the speech recognition accuracy. And the adaptive pruning algorithm is applied to the continuous speech. To verify the effectiveness of proposed method, we carried out the continuous speech recognition for the Korean air flight reservation task. Experimental results show that the adopted algorithm has the average 90.9% for continuous speech recognition and the average 90.7% for word recognition accuracy including continuous speech. And in case of adopting the adaptive pruning algorithm to continuous speech, it reduces the recognition time of about 1.2 seconds(15%) without any loss of accuracy. From the result, we proved the effectiveness of the PDT-SSS algorithm and the adaptive pruning algorithm.

  • PDF

Development of Interactive Content Services through an Intelligent IoT Mirror System (지능형 IoT 미러 시스템을 활용한 인터랙티브 콘텐츠 서비스 구현)

  • Jung, Wonseok;Seo, Jeongwook
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.472-477
    • /
    • 2018
  • In this paper, we develop interactive content services for preventing depression of users through an intelligent Internet of Things(IoT) mirror system. For interactive content services, an IoT mirror device measures attention and meditation data from an EEG headset device and also measures facial expression data such as "sad", "angery", "disgust", "neutral", " happy", and "surprise" classified by a multi-layer perceptron algorithm through an webcam. Then, it sends the measured data to an oneM2M-compliant IoT server. Based on the collected data in the IoT server, a machine learning model is built to classify three levels of depression (RED, YELLOW, and GREEN) given by a proposed merge labeling method. It was verified that the k-nearest neighbor (k-NN) model could achieve about 93% of accuracy by experimental results. In addition, according to the classified level, a social network service agent sent a corresponding alert message to the family, friends and social workers. Thus, we were able to provide an interactive content service between users and caregivers.

A Design and Implementation Red Tide Prediction Monitoring System using Case Based Reasoning (사례 기반 추론을 이용한 적조 예측 모니터링 시스템 구현 및 설계)

  • Song, Byoung-Ho;Jung, Min-A;Lee, Sung-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12B
    • /
    • pp.1219-1226
    • /
    • 2010
  • It is necessary to implementation of system contain intelligent decision making algorithm because discriminant and prediction system for Red Tide is insufficient development and the study of red tide are focused for the investigation of chemical and biological causing. In this paper, we designed inference system using case based reasoning method and implemented knowledge base that case for Red Tide. We used K-Nearest Neighbor algorithm for recommend best similar case and input 375 EA by case for Red Tide case base. As a result, conducted 10-fold cross verification for minimal impact from learning data and acquired confidence, we obtained about 84.2% average accuracy for Red Tide case and the best performance results in case by number of similarity classification k is 5. And, we implemented Red Tide monitoring system using inference result.

A Recognition Framework for Facial Expression by Expression HMM and Posterior Probability (표정 HMM과 사후 확률을 이용한 얼굴 표정 인식 프레임워크)

  • Kim, Jin-Ok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.3
    • /
    • pp.284-291
    • /
    • 2005
  • I propose a framework for detecting, recognizing and classifying facial features based on learned expression patterns. The framework recognizes facial expressions by using PCA and expression HMM(EHMM) which is Hidden Markov Model (HMM) approach to represent the spatial information and the temporal dynamics of the time varying visual expression patterns. Because the low level spatial feature extraction is fused with the temporal analysis, a unified spatio-temporal approach of HMM to common detection, tracking and classification problems is effective. The proposed recognition framework is accomplished by applying posterior probability between current visual observations and previous visual evidences. Consequently, the framework shows accurate and robust results of recognition on as well simple expressions as basic 6 facial feature patterns. The method allows us to perform a set of important tasks such as facial-expression recognition, HCI and key-frame extraction.

Association Analysis for Detecting Abnormal in Graph Database Environment (그래프 데이터베이스 환경에서 이상징후 탐지를 위한 연관 관계 분석 기법)

  • Jeong, Woo-Cheol;Jun, Moon-Seog;Choi, Do-Hyeon
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.15-22
    • /
    • 2020
  • The 4th industrial revolution and the rapid change in the data environment revealed technical limitations in the existing relational database(RDB). As a new analysis method for unstructured data in all fields such as IDC/finance/insurance, interest in graph database(GDB) technology is increasing. The graph database is an efficient technique for expressing interlocked data and analyzing associations in a wide range of networks. This study extended the existing RDB to the GDB model and applied machine learning algorithms (pattern recognition, clustering, path distance, core extraction) to detect new abnormal signs. As a result of the performance analysis, it was confirmed that the performance of abnormal behavior(about 180 times or more) was greatly improved, and that it was possible to extract an abnormal symptom pattern after 5 steps that could not be analyzed by RDB.

A Study on Development of Collaborative Problem Solving Prediction System Based on Deep Learning: Focusing on ICT Factors (딥러닝 기반 협력적 문제 해결력 예측 시스템 개발 연구: ICT 요인을 중심으로)

  • Lee, Youngho
    • Journal of The Korean Association of Information Education
    • /
    • v.22 no.1
    • /
    • pp.151-158
    • /
    • 2018
  • The purpose of this study is to develop a system for predicting students' collaborative problem solving ability based on the ICT factors of PISA 2015 that affect collaborative problem solving ability. The PISA 2015 computer-based collaborative problem-solving capability evaluation included 5,581 students in Korea. As a research method, correlation analysis was used to select meaningful variables. And the collaborative problem solving ability prediction model was created by using the deep learning method. As a result of the model generation, we were able to predict collaborative problem solving ability with about 95% accuracy for the test data set. Based on this model, a collaborative problem solving ability prediction system was designed and implemented. This research is expected to provide a new perspective on applying big data and artificial intelligence in decision making for ICT input and use in education.

FPGA Design of SVM Classifier for Real Time Image Processing (실시간 영상처리를 위한 SVM 분류기의 FPGA 구현)

  • Na, Won-Seob;Han, Sung-Woo;Jeong, Yong-Jin
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.209-219
    • /
    • 2016
  • SVM is a machine learning method used for image processing. It is well known for its high classification performance. We have to perform multiple MAC operations in order to use SVM for image classification. However, if the resolution of the target image or the number of classification cases increases, the execution time of SVM also increases, which makes it difficult to be performed in real-time applications. In this paper, we propose an hardware architecture which enables real-time applications using SVM classification. We used parallel architecture to simultaneously calculate MAC operations, and also designed the system for several feature extractors for compatibility. RBF kernel was used for hardware implemenation, and the exponent calculation formular included in the kernel was modified to enable fixed point modelling. Experimental results for the system, when implemented in Xilinx ZC-706 evaluation board, show that it can process 60.46 fps for $1360{\times}800$ resolution at 100MHz clock frequency.