• Title/Summary/Keyword: 야간고온

Search Result 42, Processing Time 0.029 seconds

Control of Unseasonable Flowering in Chrysanthemum 'Baekma' by 2-chloroethylphosphonic Acid and Night Temperature (2-chloroethylphosphonic acid와 야간온도에 따른 '백마' 국화의 불시개화 조절)

  • Lee, Chang-Hee;Cho, Myeong-Whan
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.539-548
    • /
    • 2011
  • This study was conducted to control unseasonable flowering in a standard chrysanthemum 'Baekma' bred in Korea by 2-chloroethylphosphonic acid (ethephon) and night temperature (NT) through suppression of the transition from a vegetative to a reproductive stage under long day length caused by high NT in summer season. Ethephon was applied either once or twice at a concentration of 0, 200, 400, or $800mg{\cdot}L^{-1}$. The NT within controlled mini-plastic houses was maintained at 13, 17, or $21^{\circ}C$. The NT at $13^{\circ}C$ showed the greatest inhibiting effect of unseasonable flowering among all NTs regardless of various combinations of ethephon concentration and frequency. Moreover, the inhibition tendency of unseasonable flowering was distinctly decreased in a NT-dependant manner. Higher NTs reduced cut flower length and number of leaves, but increased the number of young leaves attached to top part of the flower. Higher ethephon concentrations and lower NTs increased cut flower length and the fresh weight of total, stem, and leaves due to the extension of vegetative growth period. Thus, if it is difficult to control the NT below $21^{\circ}C$ in greenhouses in the summer season, we recommended to spray more than $200mg{\cdot}L^{-1}$ ethephon once after planting to suppress unseasonable flowering and to ensure sufficient length of cut flowers.

Effect of Root Zone Cooling Using the Air Duct on Temperatures and Growth of Paprika During Hot Temperature Period (공기순환 덕트를 이용한 근권부 냉방이 고온기 파프리카 재배에서 온도와 생육에 미치는 영향)

  • Choi, Ki Young;Jang, Eun Ji;Rhee, Han Cheol;Yeo, Kyung-Hwan;Choi, Eun Young;Kim, Il Seop;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.243-251
    • /
    • 2015
  • This study aimed to determine the effects of root zone cooling using air duct on air temperature distribution and root zone and leaf temperatures of sweet pepper (Capsicum annum L. 'Veyron') grown on coir substrate hydroponic system in a greenhouse. When the air duct was laid at the passage adjacent the slab, the direction of air blowing was upstream at $45^{\circ}$. The cooling temperature was set at $20^{\circ}C$ for day and $18^{\circ}C$ for night. For cooing timing treatments, the cooling air was applied at all day (All-day), only night time (5 p.m. to 1 a.m.; Night), or no cooling (Control). The air temperature inside the greenhouse at a height of 40 and 80cm above the floor, and substrate and leaf temperatures, fruit characteristics, and fruit ratio were measured. Under the All-day treatment, the air temperature was decreased about $4.4{\sim}5.1^{\circ}C$ at the height of 40cm and $2.1{\sim}3.1^{\circ}C$ at the height of 80cm. Under the Night treatment, the air temperature was decreased about $3.4{\sim}3.8^{\circ}C$ at the height of 40cm and $2.2{\sim}2.7^{\circ}C$ at the height of 80cm. The daily average temperature in the substrate was in the order of the Control ($27.7^{\circ}C$) > Night ($24.1^{\circ}C$) > All-day ($22.8^{\circ}C$) treatment. Cooling the passage with either upstream blowing at $45^{\circ}$ or horizontal blowing at $180^{\circ}$ was effective in lowering the air temperature at a height of 50cm; however, no difference at a height of 100cm. Cooling the passage with perpendicular direction at $90^{\circ}$ was effective in lowering the air temperature at the height between 100 and 200cm above the floor; however, no effect on the temperature at the height of 50cm. A greater decrease in leaf temperature was found at 7 p.m. than that at 9. a.m. under both All-day and Night treatments. Fresh weight partitioning of fruit was in the order of the All-day (48.6%) > Night (45.6%) > Control (24.4%) treatment. A higher fruit production was observed under the All-day treatment, in which the accumulated average temperature was the lowest, and it may have been led to a higher proportion of photosynthate distributed to fruit than other treatments.

Rice Seedling Establishment for Machine Transplanting II. Effects of Sprouting and Seed Bed Temperature on the Seedling Characteristics (수도 기계이앙 육묘에 관한 연구 II보. 간역출아방법 및 육묘상내 온도가 묘소질에 미치는 영향)

  • Yong-Dea Yun;Hyun-Ok Choi;Jong-Hoon Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.22 no.2
    • /
    • pp.32-36
    • /
    • 1977
  • Experiments were conducted to know the effects of seed bed temperatures on the sprouting of seeds and seedling growth in the phytotron and field. Sprouting of seeds were most uniform when seed bed was stored under the straw and vinyl mulching for 48 hours after seed bed temperature increased up to 3$0^{\circ}C$ by the sun. In the phytotron, optimum temperature was 32$^{\circ}C$ for sprouting and day/night temperature of 25/30 and 20/15$^{\circ}C$ for greening and hardening of seedlings, respectively. In the field, the best results were obtained under the conditions of sprouting in the seedling chamber heated by electricity and greening the hardening under the double vinyl tunnel in the upland nusery bed.

  • PDF

The Effect of Root Zone Cooling at Night on Substrate Temperature and Physiological Response of Paprika in Hot Climate (고온기 야간시간 근권냉방이 파프리카 배지온도와 생리적 반응에 미치는 영향)

  • Choi, Ki Young;Ko, Ji Yeon;Choi, Eun Young;Rhee, Han Cheol;Lee, Sung Eun;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.349-354
    • /
    • 2013
  • This study examined a technique for cooling root zone aimed at lowering substrate temperature for sweet pepper (Capsicum annum L. 'Orange glory') cultivation in coir substrate hydroponics during hot season, from the $16^{th}$ of July to $15^{th}$ of October in 2012. The root zone cooling technique was applied by using an air duct (${\varnothing}12$ cm, hole size 0.1 mm) to blow cool air between two slabs during night (5p.m. to 3a.m.). Between the $23^{rd}$ of July and $31^{st}$ of August (hot temperature period), average daily substrate temperature was $24.7^{\circ}C$ under the root zone cooling, whereas it was $28.2^{\circ}C$ under condition of no cooling (control). In sunny day (600~700 W $m^{-2}{\cdot}s^{-1}$), average substrate temperatures during the day (6a.m. to 8p.m.) and night (8p.m. to 6a.m.) were lower about $1.7^{\circ}C$ and $3.3^{\circ}C$, respectively, under the cooling treatment, compared to that of control. The degree of temperature reduction in the substrate was averagely $0.5^{\circ}C$ per hour under the cooling treatment during 6p.m. to 8p.m.; however, there was no decrease in the temperature under the control. The temperature difference between the cooling and control treatments was $1.3^{\circ}C$ and $0.6^{\circ}C$ in the upper and lower part of the slab, respectively. During the hot temperature period, about 32.5% reduction in the substrate temperature was observed under the cooling treatment, compared to the control. Photosynthesis, transpiration rate, and leaf water potential of plants grown under the cooling treatment were significantly higher than those under the control. The first flowering date in the cooling was faster about 4 days than in the control. Also, the number of fruits was significantly higher than that in the control. No differences in plant height, stem thickness, number of internode, and leaf width were found between the plants grown under the cooling and control, except for the leaf length with a shorter length under the cooling treatment. However, root zone cooling influenced negligibly on eliminating delay in fruiting caused by excessively higher air temperature (> $28^{\circ}C$), although the substrate temperature was reduced by $3^{\circ}C$ to $5.6^{\circ}C$. These results suggest that the technique of lowering substrate temperature by using air-duct blow needs to be incorporated into the lowering growing temperature system for growth and fruit set of health paprika.

A Study on Design of the Temperature Testing Equipment Malfunction Monitoring System (온도시험 장비 오류 감시 시스템 설계에 관한 연구)

  • Yoon, Myung-Seob;Park, Koo-Rack
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.435-436
    • /
    • 2019
  • 본 논문에서는 첨단 정밀 전자장치의 신뢰성 시험을 위해 사용하는 온도시험 장비의 오동작이 발생이 되면, 시험담당자에게 문자메시지를 통해 현재 시험장비가 오동작 중임을 알릴 수 있는 시스템을 제안한다. 제안시스템은 기존에 오픈 소스를 이용한 시험장비의 오동작 여부를 모니터를 하는 시스템에 시험담당자에게 이 사실을 SMS로 전달하는 시스템을 추가한 것이다. 정밀 전자장치는 출고전에 온도시험 장비를 사용하여 설정한 저온, 고온 온도 상황에서 각각 정상적으로 장치가 동작하는지의 여부를 확인하게 된다. 만약 이 상황하에서 온도 시험장비가 설정한 저온의 온도 이하 혹은 설정한 고온의 온도 이상 등의 오동작이 발생되면, 수억원에 이르는 고가의 시험대상 제품이 손상을 입어 폐기하는 경우가 생긴다. 제안한 시스템은 시험 운용자가 자리를 비우는 야간에 특히 유용한 시스템으로서 온도시험장비와 별도의 전원을 사용하여 그 신뢰성을 높이는 장점을 가진다.

  • PDF

여름철 돈사 관리의 지혜

  • Park, Jun-Cheol
    • Feed Journal
    • /
    • v.4 no.7 s.35
    • /
    • pp.108-115
    • /
    • 2006
  • 우리나라는 사계절이 뚜렷한 기후적 환경으로 여름철 한낮의 외부온도가 35℃ 이상이 되는 날이 계속되고, 야간에도 25℃ 이상인 열대야가 지속되는 날이 많다. 이러한 조건하에서 양돈 생산성 향상을 위해서는 돼지의 사육환경과 성장단계별 적절한 사양기술을 투입하여야만 한다. 돼지는 생리적으로 추위에 의한 영향보다는 여름철 더위에 의한 영향을 쉬게 받으며, 이로 인해 자돈의 쇠약, 압사,수태율 저하, 번식장애 등으로 생산성 저하의 원인이 되며, 사육기간 중에 일시적인 고온스트레스가 돼지가 생존하는 동안 능력의 저하를 초래하게 된다. 특히 하절기 양돈장은 우기와 무더위로 인한 돈사내 온도의 급상승과 더불어 습도의 불균형에 의한 환경적 스트레스로 번식능력과 생산성에 크게 영향을 미칠 수 있으며,돼지에 일시적인 고온 스트레스 피해는 장기간 계속되며, 생존하는 동안 능력저하를 초래하기 때문에 농장별 사육여건에 따른 성장저해 요인을 제거하는 안목이 필요한 계절이다. 즉,5~9월 모돈에 고온스트레스가 가해지면 11~12월, 다음해 1월 모돈의 분만율은 최저가 되고 , 이 시기에 생산된 자돈은 추운겨울을 이겨내야 함으로 육성률도 낮아지며, 이로 인해 4~7월의 출하성적은 최저가 되는 것이다. 따라서 모돈 관리는 5~9월이 집중관리가 필요한 시기이기도 하다. 고온 다습한 환경 하에서 어미돼지는 영양불균형과 생체리듬의 파괴로 인하여 신생자돈의 폐사가 증가할 수도 있고,이유 후 1주일 이내 발정 재귀율이 약 30%정도 감소하고 무발정돈이 많이 발생되며, 수태가 되어도 조기 배아사멸 및 흡수로 인하여 수태율이 25%까지 감소될 수 있다. 현재 국내 양돈농가에는 예년과 같이 돼지 조모성질환의 발생이 늘어나고 있고, 어려움을 겪고 있는 농장이 많은 것으로 조사 보고되어지고 있는데, 이는 농장에 사육되는 돈군이 외부환경에 대한 적응능력과 질병에 저항력이 부족하여 쉽게 질병에 노출되어 발생함으로 농장에는 돼지가 스트레스를 받지 않게 외부 환경과 사양관리 측면에 심혈을 기울려 강건한 축군을 유지하려는 노력이 무엇보다 우선되어져야 한다고 생각된다. 따라서 본고에서는 여름철에 돼지 스트레스를 줄이고 생산성을 향상시키기 위해 돼지의 생리변화와 돈사 급수설비와 사료관리 및 사육관리에 대해 알아보고자 한다.

  • PDF

Changes in Tomato Growth and Productivity under Different Night Air Temperatures (야간온도에 따른 토마토 생육 및 생산성 변화)

  • Kang, Yun-Im;Kwon, Joon-Kuk;Park, Kyoung-Sub;Choi, Gyeong-Lee;Roh, Mi-Young;Cho, Myeong-Whan;Kim, Dae-Young;Kang, Nam-Jun
    • Journal of agriculture & life science
    • /
    • v.46 no.6
    • /
    • pp.25-31
    • /
    • 2012
  • This study aimed to investigate the effect of night temperature on the productivity, growth, and fruit characteristics of tomatoes and set the optimal night air temperature. Tomatoes (Solanum lycopersicum Mill. cv. Superdoterang and cv. Rapito) were grown at 5, 10, 15, and $20^{\circ}C$ during night time and ventilation temperature point during day time set $27^{\circ}C$. Depending on night air temperature, plant height, leaf area, fresh and dry weight of each organ, leaf, stem, and root were changed. Condition of high night temperature resulted in promotion of tomatoes growth with high dry weight and fresh weight. However, the dry weight under night temperature $20^{\circ}C$ decreased, especially, in 'Superdoterang'. On changes of yield, 'Rapito' showed higher productivity than 'Superdoterang' and the highest productivity point for nigh temperature is $13.32^{\circ}C$ for 'Superdoterang' and $14.25^{\circ}C$ for 'Rapito'. Although the total yield decreased from the point, the daily productivity increased with increasing night temperature, the highest point for nigh temperature is $14.45^{\circ}C$ for 'Superdoterang' and $16.46^{\circ}C$ for 'Rapito'. High temperature deceased the fruit weight and increased total soluble solid content in fruits. It is concluded that the night air temperature changes productivity of tomato and the temperatures between productivity and growth velocity have differences depending on different cultivars. scores than the other beef jerky samples (p<0.05).

Alleviation of Low and High Temperature Injury in Tomato Plants by Uniconazole (Uniconazole처리가 토마토의 저온 및 고온 피해 경감에 미치는 효과)

  • Ku, Ja Hyeong;Lee, Young Bok
    • Korean Journal of Agricultural Science
    • /
    • v.27 no.2
    • /
    • pp.86-94
    • /
    • 2000
  • This study was carried out to determine the effectiveness of uniconazole in ameliorating low and high temperature injury in tomato plants(Lycopersicon esculentum Mill. cvs. Fireball and Patio). Plants were given a soil drench of 0, 0.001, 0.01 or $0.1mg{\cdot}pot^{-1}$ uniconazole, and after 14 days, were treated with 12-h day/12-h night cycles at $25/25^{\circ}C$, $2.5/25^{\circ}C$, $25/2.5^{\circ}C$ or $40/40^{\circ}C$ for 4 days in controlled-environment chamber. Number of damaged leaves per plant, reduction of stem elongation, and overall injury were high at $2.5/25^{\circ}C$, but more reduction of leaf elongation, delay of flowering, and abortion of floral bud were observed in plants at $40/40^{\circ}C$. There was difference in degree of injury between cultivars, thus, 'Fireball' was much affected by unfavorable temperature regimes. All concentrations of uniconazole reduced leaf and stem elongation, increased total chlorophyll concentration, delayed flowering, and significantly provided protection against low and high temperature injury in two cultivars. In general, the application of uniconazole did not inhibit flowering delay and floral bud abortion induced by high and low temperature exposure. Our results support the hypothesis that the role of uniconazole is related to defense system against oxidative stress induced by low temperature stress. Further research is required to clarifu the phytoprotective mechanism of this compound agaist high temperature stress.

  • PDF

Studies on the pear Abnormal Leaf Spot Disease 4. Influence of Temperature and Soil Moisture (배나무잎 이상반점증상에 관한 연구 4. 온도 및 토양수분의 영향)

  • 남기웅;김충회
    • Korean Journal Plant Pathology
    • /
    • v.12 no.2
    • /
    • pp.209-213
    • /
    • 1996
  • 배나무잎 이상반점증상의 발병환경 조건을 조사하고자 실험한 결과 주간 23$^{\circ}C$, 야간 18$^{\circ}C$ 온도조건에서 병징발현이 가장 심하였고 이보다 높은 온도인 28/23$^{\circ}C$와 낮은 온도인 18/13$^{\circ}C$에서는 발병이 아주 적었다. 배나무잎에 봉지를 피복하면 발병이 전혀 없거나 극히 저조하였다. 이것은 봉지내의 온도가 최고 46.8$^{\circ}C$까지 올라가 고온에 의하여 발병이 억제된 것으로 생각된다. 이병주 토양과 건전주 토양의 화학성을 조사한 결과 이병주 토양에서는 건전주 토양보다 유효인산량이 많게 나타났다. 토양수분이 많거나 적었을 때는 병징발현이 다소 늦어지기는 하나 최종 조사시 발병정도는 큰 차이를 나타내지 않았다.

  • PDF

Studies on the Prevention of Excessive Drying Leaves during Burley Tobacco Curing I. Effect of Temperature and Relative Humidity on the Production of Excessive Drying Leaves (버어리종 담배건조시 급건엽 발생방지에 관한 연구 I. 온습도의 영향)

  • 배성국;임해건;추홍구
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.4
    • /
    • pp.420-425
    • /
    • 1986
  • This study was conducted to investigate the influence of air temperature and relative humidity on excessive drying rate of burley tobacco. In experiment I, 4 temperatures and I humidity by day and air curing by night were treated from initial curing stage. In experiment II, 15 combinations of 3 temperatures and 5 humidities were applied from the yellow stage of cure. Yellowish cured leaves resulted from overdrying at high temperature and especially, at low humidity. How- ever, these were not produced at 75-80% RH and under 35$^{\circ}C$ by day with air curing b y night. The proper range of temperature and humidity for desirable color of cured leaf were the combinations of 30$^{\circ}C$, 75-80% RH or 35$^{\circ}C$, 80-85% RH. As excessive drying leaves increased, physical properties of cured leaves were poorer and chemical contents were less decomposed.

  • PDF