• Title/Summary/Keyword: 액화 석유 분사

Search Result 32, Processing Time 0.027 seconds

Development of the cooling effect skincare product using LPG as propellant (액화 석유가스를 이용한 냉각 화장품 개발)

  • Kim Hwayong;Park Chanik;Bae Won
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.1-6
    • /
    • 2003
  • Freon gas has been replaced with LPG in the cosmetic industry because of its bad effects on environment. In this paper, skincare product with a cooling effect was developed using LPG as propellant. A cooling effect is obtained by the ice which is formed through spraying. Ice formation is affected by the composition of LPG and most of all, the high content of propane gas in the LPG results in the irregular surface of ice formed because of its high vapor pressure. Also the ratio of LPG to skincare solution affects the formation of ice.

  • PDF

Study on the sprayability of the skincare product with powders using LPG as propellant (액화석유가스를 이용한 파우더 함유 화장품의 분사안정성에 관한 연구)

  • Kim Hwayong;Park Chanik;Bae Won
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.1 s.22
    • /
    • pp.7-12
    • /
    • 2004
  • In the quality control of the aerosol skincare products containing powders, it is essential to guarantee that the contents in the bottle can be completely used without leakage or clogging of the nozzle. In this paper, the clogging caused by powder was investigated and the clogging can be effectively removed by emulsifying the contents containing powder with the LPG using a proper surfactant. And the spraying test shows that the contents in the bottle are completely propelled to outside by LPG when properly emulsified by POE(40) HCO.

  • PDF

Visualization of the Icing at LPLi Engine Injector and the Effect of the Inflow of Ice Particle into Cylinder on the Combustion and the Exhaust Gas (LPLi 엔진 인젝터의 결빙조각 형성이 연소 및 배기가스에 미치는 영향)

  • 박정철;김우석;이종화;이병옥;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.39-44
    • /
    • 2004
  • As air pollution has become an important issue across the world, studies of clean fuel are on going to reduce combustion emissions. One example is development of the LPLi(Liquefied Phase LPG injection) engine. Some problems are occurred during development. One of the problems is icing phenomenon at injector tip due to evaporation potential heat when liquid LPG is injected. If the Icing is raised at injector tip or injector inserting hole, it disturbs fuel injection. And if the ice particles are inducted into cylinder, it brings problems associated with control of emission and air/fuel ratio. In order to solve the problems, a rig system was set up and observed Icing of injector tip. Engine test was carried out for visualization of injector tip icing and its effects on combustion and emissions.

Various Injection Conditions and Fuel Control of an LPG Liquid Injection Engine (다양한 분사조건과 LPG 액상분사엔진의 연료량 제어)

  • Sim Hansub
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.28-35
    • /
    • 2005
  • Fuel injection rate of an injector is affected by various injection conditions such as injection duration, fuel temperature, injection pressure, and voltage in LPG liquid injection systems for either a port-fuel-injection(PFI) or a direct injection(DI) in a cylinder. Even fuel injection conditions are changed, the air-fuel ratio should be accurately controlled to educe exhaust emissions. In this study, correction factor for the fuel injection rate of an injector is derived from the density ratio and the pressure difference ratio. A voltage correction factor is researched from injection test results on an LPG liquid injection engine. A compensation method of the fuel injection rate is proposed for a fuel injection control system. The experimental results for the LPG liquid injection system in a SI-engine show that this system works well on experimental range of engine speed and load conditions. And the fuel injection rate is accurately controlled by the proposed compensation method.

A Study on the Development of Icing by Injection of LPG in the Liquid Phase around Injector (I) (LPG 액상 분사 시 인젝터 주위의 Icing 현상에 관한 연구 (I))

  • 김우석;박정철;박심수;유재석;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.87-94
    • /
    • 2003
  • Recently, LPLi(Liquied-Phase LPG injection) system is studied for the new stringent emission regulations. But , there are some problems to be solved such as injector tip icing and fuel leakage for LPLi system development. In this paper, the icing problem near injector tip which leads to difficulty of accurate A/F control was studied and reported. Icing of injector tip and port wall was observed at all the cases in this study regardless of injection duration and angle, air humidity change. The spray angle of LPLi was observed approximately two times wider than that of Gasoline injection. This makes the LPLi spray collide with intake port around injector tip. Temperature of the wetted area was decreased and icing of water vapor contained in intake air because of evaporation of the fuel film. The ice of the injector tip and port wall is also affected by the materials related to heat transfer.

Top-Feed Type Port Fuel Injector for Liquefied Petroleum Gas Liquid Phase Injection (Top-Feed Type 인젝터의 액상분사 LPG연료 분사장치 적용)

  • Yeom, Ki-Tae;Park, Jung-Seo;Bae, Choong-Sik;Park, Jeong-Nam;Kim, Sung-Kun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.30-37
    • /
    • 2007
  • The injection and spray characteristics of top-feed type injector was investigated under liquid phase injection fueled with liquefied petroleum gas (LPG). Different pressures and temperatures of fuel injection system were tested to identify the injection characteristics after hot soaking. MIE-scattering technique was used for verification of successful liquid phase injection after hot soaking. In case of bottom-feed type injector, the injection was accomplished at every experimental condition. In case of top-feed type injector, when the pressure of LPG was over 1.2 MPa, the injection was not executed. However, under the pressure were 1.2 MPa, the liquid phase injection after hot soaking was accomplished. The engine with top-feed type fuel injection equipment was restarted successfully after hot soaking.

Effects of Injection Pressures on Combustion and Emissions in a Direct Injection LPG Spark Ignition Engine (적접분사식 LPG엔진에서 연료분사압력이 연소/배기특성에 미치는 영향 연구)

  • Lee, Seok-Whan;Cho, Jun-Ho;Oh, Seung-Mook
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • High pressure LPG fuel spray with a conventional swirl injector was visualized and the impact of the injection pressure was also investigated using a DISI (direct injection spark ignition) LPG single cylinder engine. Engine performance and emission characteristics were evaluated over three different injection pressure and engine loads at an engine speed of 1500 rpm. The fuel spray pattern appeared to notably have longer penetration length and narrower spray angle than those of gasoline due to its lower angular momentum and rapid vaporization. Fuel injection pressure did not affect combustion behaviors but for high injection pressure and low load condition ($P_{inj}$=120 bar and 2 bar IMEP), which was expected weak flow field configuration and low pressure inside the cylinder. In terms of nano particle formation the positions of peak values in particle size distributions were not also changed regardless of the injection pressure, and its number densities were dramatically reduced compared to those of gasoline.

The Effect of Auxiliary use LPG on the Performance of a D.I Diesel Engine (LPG를 보조적으로 사용한 직접분사식 디젤기관의 성능에 관한 연구)

  • Bang Joong Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.138-145
    • /
    • 2005
  • Recently, the tightening of an available crude oil supplies has resulted in the development of intense consciousness for saving fuels. At the same time, some research programs have been launched to secure substitute energy sources for petroleum-derived fuels, and to reduce unhealthy products, such as CO, HC, NOx and smoke. To keep up with these trends in society, the regulation affecting diesel smoke may be greatly strengthened in a short time. In not too distant future, LPG and LNG are the most hopeful substitute fuels for automobile and truck uses. This paper discusses how to use such gaseous fuels in a diesel engine, and how much methods for introducing these fuels affect the engine performance.

A Study on the development of Engine Controller for Liquid Phase LPG Injection (액상분사방식 엔진 구동을 위한 제어기의 개발)

  • Lee J.H.;Ko K.W.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1103-1106
    • /
    • 2005
  • The research and development for LPLI system to replace the conventional LPG fuel supply system has been processed with a view to enhancing the environmental status and the efficiency for LPG cars. Part of the small sized cars are under commercialization with the LPLI application already. And yet, most of the technologies are relied upon the advanced countries and as part of the application for large scaled engines, many researches are on the increase. This study shows the technology development to make use of LPLI system for those large engines and reviews the controllers, which were manipulated through experiments for their work, reliability and possibility for commercialization.

  • PDF

The Effect of Auxiliary use LPG on the Performance of a D.I. Diesel Engine (LPG를 보조적으로 사용한 직접분사식 디젤기관의 성능에 관한 연구(II))

  • Bang, Joong-Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.150-156
    • /
    • 2006
  • Recently, the tightening of available crude oil supplies has resulted in the development of intense consciousness for saving fuels. At the same time, some research programs have been launched to secure substitute energy sources for petroleum-derived fuels, and to reduce unhealthy products, such as CO, HC, NOx and smoke. To keep up with these trends in society, the regulation affecting diesel smoke may be greatly strengthened in a short time. In not too distant future, LPG and LNG are the most hopeful substitute fuels for automobile and truck uses. This paper discusses how to use such gaseous fuels in a diesel engine, and how to find out introducing these fuels affect the engine performance.