• Title/Summary/Keyword: 액화천연가스 운반선

Search Result 39, Processing Time 0.025 seconds

A study on the mechanical performance of impregnated polymer foam in cargo leakage of LNG carrier (LNG운반선의 화물 누출 시 함침된 고분자 폼의 기계적 성능에 관한 연구)

  • Park, Gi-Beom;Kim, Tae-Wook;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.345-352
    • /
    • 2017
  • In this study, the effect of cryogenic liquefied natural gas leakage and loading on liquefied natural gas cargo hold is investigated to observe the performance of the polymer foam material that comprises the cryogenic insulation of the cargo hold. The primary barriers of liquefied natural gas carrier that are in contact with the liquefied natural gas will leak if damage is accumulated, owing to fluid impact loads or liquefied natural gas loading / unloading over a long period. The leakage of the cryogenic fluid affects the interior of the polymer foam, which is a porous closed cell structure, and causes a change in behavior with respect to the working load. In this study, mechanical properties of polyisocyanurate foam specimen, which is a polymer material used as insulation, are evaluated. The performance of the specimens, owing to the cold brittleness and the impregnation effects of the cryogenic fluids, are quantitatively compared and analyzed.

Third Wave of Gas Management System in LNG Carrier - VaCo System (LNG 운반선에서의 신개념 증발 가스 처리 시스템 - VaCo 시스템)

  • Choi, Jung-Ho;Yoo, Hong-Sung;Yoo, Kyung-Nam;Heo, An;Lee, Dou-Yeong;Lyy, Sung-Kak
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.89-93
    • /
    • 2007
  • The Boil-off gas (BOG) generation during the voyage is inevitable since Natural Gas (NG) in normally liquefied below -160 degree C in atmosphere condition and small heat ingress due to relatively hot outside keeps evaporating continuously. The one of major issue in LNG carriers is to handle generated BOG from cargo tank. The generated BOG affects to increase the cargo tank pressure and Gas Management System (GMS) for LNG carriers is closely related to cargo tank pressure maintenance. Economically, BOG is generally used as fuel in LNG carrier. Newly developed GMS for LNG carrier in boiler propulsion system, VaCo System, not only accomplish automatic control in GMS but also ensure safer operation.

  • PDF

A Study on the Safe Maneuvering Technology Based on the Thermal Calculation of Membrane Type LNG Carrier (멤브레인형 LNGC의 열계산에 기초한 안전운항기술에 관한 연구)

  • Jin, Chang-Fu;Kim, Kyung-Kuen;Oh, Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1192-1200
    • /
    • 2008
  • This paper is concerned with the thermal design of the $138,000m^3$ class membrane type LNGC. To predict the temperature distribution, BOG and BOR, 3-dimensional numerical calculation was carried-out for the quarter of No.3 LNG tank. These sequence analyses were performed under the standard conditions of IMO ship design condition, USCG ship design condition and the Korean flag LNGC's route condition according to the 6-voyage modes. As the results, temperature behavior, heat flux, total penetrating heat, BOG and BOR were obtained, and those were compared with the maneuvering results considering the real temperature variation of air and sea water temperature at noon time. For securing the safety of LNGC during the ballast voyage, optimum control patterns of pressure and temperature in LNG tank is suggested in this paper.

Study on the Effect of Density Ratio of Gas and Liquid in Sloshing Experiment (기체-액체 밀도차에 대한 슬로싱 충격압력의 실험적 고찰)

  • Ahn, Yangjun;Kim, Sang-Yeob;Kim, Kyong-Hwan;Lee, Sang-Woo;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.2
    • /
    • pp.120-128
    • /
    • 2013
  • This paper presents the results of sloshing experiments having different fluids in model tanks with various density ratios. The experimental model consisting water and air at ambient, which has been commonly used, is not consistent in density ratio with that of an actual LNG cargo tank. Therefore, an advanced experimental scheme is developed to consider the same density ratio of LNG and NG by using a mixed gas of sulfur hexafluoride ($SF_6$) and nitrogen ($N_2$). For experimental observation, a two-dimensional model tank of 1/40 scale and a three-dimensional model tank of 1/50 scale have been manufactured and tested at various conditions. Two different fillings with various excitation frequencies under regular motions have been considered for the two-dimensional model tank, and three different filling levels under irregular motions have been imposed for the three-dimensional model tank. The density ratio between gas and liquid varies from the ratio of the ambient air and water to that of the actual LNG cargo container, and the different composition of gas is used for this variation. Based on the present experimental results, it is found that the decrease of sloshing pressure is predicted when the density ratio increases.

Design and Economic Analysis of Low Pressure Liquid Air Production Process using LNG cold energy (LNG 냉열을 활용한 저압 액화 공기 생산 공정 설계 및 경제성 평가)

  • Mun, Haneul;Jung, Geonho;Lee, Inkyu
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.345-358
    • /
    • 2021
  • This study focuses on the development of the liquid air production process that uses LNG (liquefied natural gas) cold energy which usually wasted during the regasification stage. The liquid air can be transported to the LNG exporter, and it can be utilized as the cold source to replace certain amount of refrigerant for the natural gas liquefaction. Therefore, the condition of the liquid air has to satisfy the available pressure of LNG storage tank. To satisfy pressure constraint of the membrane type LNG tank, proposed process is designed to produce liquid air at 1.3bar. In proposed process, the air is precooled by heat exchange with LNG and subcooled by nitrogen refrigeration cycle. When the amount of transported liquid air is as large as the capacity of the LNG carrier, it could be economical in terms of the transportation cost. In addition, larger liquid air can give more cold energy that can be used in natural gas liquefaction plant. To analyze the effect of the liquid air production amount, under the same LNG supply condition, the proposed process is simulated under 3 different air flow rate: 0.50 kg/s, 0.75 kg/s, 1.00 kg/s, correspond to Case1, Case2, and Case3, respectively. Each case was analyzed thermodynamically and economically. It shows a tendency that the more liquid air production, the more energy demanded per same mass of product as Case3 is 0.18kWh higher than Base case. In consequence the production cost per 1 kg liquid air in Case3 was $0.0172 higher. However, as liquid air production increases, the transportation cost per 1 kg liquid air has reduced by $0.0395. In terms of overall cost, Case 3 confirmed that liquid air can be produced and transported with $0.0223 less per kilogram than Base case.

Development of a GTT NO96 Membrane Type 170K $m^3$ LNG Carrier with Ice Class IA (GTT.NO 96 멤브레인형 170K ICE-1A급 천연액화가스 운반선 개발)

  • Oh, Yeong-Tae;Han, Sung-Kon;Yoo, In-Sang;Urm, Hang-Sub
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.6-17
    • /
    • 2009
  • The present paper addresses development of a GTT NO96 membrane type 170K m3 LNG carrier targeted to operate in moderate ice infested seas including Baltic Sea, Sakhalin port of Sea of Okhotsk, Murmansk port of Barents Sea, etc. Critical design issues are covered in detail to meet the requirements coming from the missioned operation conditions comprising low design ambient temperature, harsh wave conditions, stringent environmental protection policies, etc.

  • PDF

Strength Analysis for Transition Structure Design in way of Trunk Deck and Deckhouse on LNGC (LNG 선박의 트렁크 갑판과 거주구 연결 부위의 설계해석)

  • Kwon Seung-Min;Han Sungkon;Heo Joo-Ho
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.76-83
    • /
    • 2005
  • Membrane type LNG Carriers are characterized by their special structures such as trunk deck above upper deck. It is necessary to introduce an appropriate structure arrangement taking into account transition of the trunk deck to the upper deck or deckhouse in fore and aft parts. The transition area at aft part -from trunk deck to the deckhouse - is to be specially considered because of high longitudinal stresses applied at the area. This study has been carried out to tackle the transitional structure problem in design stage This paper deals with not only mesh size of FE models for scantling evaluation and fatigue assessment but also technical issues regarding fatigue assessment.

  • PDF

A Development of LNG Pump Tower Analysis System (천연 액화 가스 운반선의 펌프타워 해석 시스템 개발)

  • Lee, Kwang-Min;Han, Sung-Kon;Heo, Joo-Ho;Park, Jae-Hyung
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.7-13
    • /
    • 2007
  • The purpose of this study is to develop a structural analysis system of LNG pump tower structure. The system affords to build optimized finite element model and analysis procedure of the pump tower structure. The pump tower structure is one of the most important components of LNG (liquefied natural gas) carriers. The pump tower structure is subject to sloshing load of LNG induced by ship motion depending on filling ratio. Three types of loading components, which are thermal, inertia and self-gravity are considered in the system. All these design and analysis procedures are embedded in to the analysis system successfully.

  • PDF

Development of FPGA Based HIL Simulator for PMS Performance Verification of Natural Liquefied Gas Carriers (액화천연가스운반선의 PMS 성능 검증을 위한 FPGA 기반 HIL 시뮬레이터 개발)

  • Lee, Kwangkook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.7
    • /
    • pp.949-955
    • /
    • 2018
  • Hardware-in-the-loop (HIL) simulation is a technique that can be employed for developing and testing complex real-time embedded systems. HIL simulation provides an effective platform for verifying power management system (PMS) performance of liquefied natural gas carriers, which are high value-added vessels such as offshore plants. However, HIL tests conducted by research institutes, including domestic shipyards, can be protracted. To address the said issue, this study proposes a field programmable gate array (FPGA) based PMS-HIL simulator that comprises a power supply, consumer, control console, and main switchboard. The proposed HIL simulation platform incorporated actual equipment data while conducting load sharing PMS tests. The proposed system was verified through symmetric, asymmetric, and fixed load sharing tests. The proposed system can thus potentially replace the standard factory acceptance tests. Furthermore, the proposed simulator can be helpful in developing additional systems for vessel automation and autonomous operation, including the development of energy management systems.