• 제목/요약/키워드: 액화질소가스

검색결과 30건 처리시간 0.021초

특집:에너지플랜트 및 핵심기자재 기술 - 가스액화플랜트기술

  • 홍용주;고준석;김효봉;박성제
    • 기계와재료
    • /
    • 제24권1호
    • /
    • pp.26-35
    • /
    • 2012
  • 가스액화플랜트는 질소, 산소, 헬륨 등 고순도의 가스를 효율적으로 저장 및 운송을 위해 가스를 액체로 변환하는 플랜트로, 대표적인 플랜트로는 질소, 산소, 아르곤 등의 가스를 생산하는 공기분리플랜트, 헬륨액화플랜트, 수소액화플랜트, 천연가스액화플랜트 등이 있다. 질소, 산소, 수소 등의 가스는 산업의 전반적인 분야에서 널리 사용되고 있으며, 국내의 경우 철강, 반도체, 디스플레이제조산업 등 가스 다소비 분야의 비약적인 발전에 따라 급격하게 수요가 증가하고 있는 상황이다. 대용량의 가스액화플랜트는 원료로부터 불순물을 제거하고, 팽창 또는 열교환 과정을 통해 가스를 액체로 변환하는 극저온기술로 주로 구성되며, 이와 같은 과정은 압축기, 열교환기, 증류탑, 팽창터빈, 콜드박스 등의 구성요소에 의해 구현된다. 따라서 가스액화플랜트에서 효율적인 극저온의 생성 및 유지는 플랜트의 경제성 제고를 위해 핵심적인 요소이다.

  • PDF

바이오가스 고질화와 초저온액화공정을 통한 액화바이오메탄 생산 (Biogas upgrading and Producing the Liquefied Bio-methane by Cryogenic Liquefaction Process)

  • 심동민;성현제;박성범;김낙주;장호명;이재영;이영민;이우철;오화수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.246.1-246.1
    • /
    • 2010
  • 본 연구는 바이오가스의 에너지효율성을 높이기 위한 연구로서 바이오가스 정제공정과 초저온액화공정을 통하여 액화바이오메탄을 생산하는 바이오가스 고질화기술개발 연구이다. 바이오가스 정제공정은 탈황, 제습, 흡착, 압축, $CO_2/CH_4$ 분리공정으로 구성하고, 초저온액화공정은 열교환기, $CO_2$ 제거설비, 질소냉매 공급공정으로 구성하여 혐기성소화조에서 발생하는 바이오가스($CH_4$ 농도: 60~65%, $H_2S$: 1,500~2,500ppm)를 $200Nm^3/hr$의 유량으로 인입시켜 액화바이오메탄을 생산하였다. 연구결과, 탈황공정에서는 가성소다 세정법을 이용하여 1,500~2,500ppm으로 인입되는 $H_2S$를 100ppm 이하로 제거한 후, 흡착법을 이용하여 $H_2S$를 완전히 제거하였다. 바이오가스에 포화된 수분은 냉각제습과 흡착제습공정을 통해 Dew point $-70{\sim}-90^{\circ}C$까지 제거하여 안정적으로 $CO_2/CH_4$ 분리공정에 인입시켰다. $CO_2/CH_4$ 분리공정은 흡착방식을 적용하여 $CH_4$ 순도가 95% 이상인 바이오메탄을 생산하였으며, 이때 메탄 회수율은 약 87%이였다. $CO_2$가 분리된 바이오메탄은 초저온액화공정을 이용하여 액화바이오메탄으로 전환시켰다. 이때 초저온액화공정은 Reverse Brayton cycle로 구성하였으며, 냉매로는 질소를 사용하였다. 액화바이오메탄의 생산은 바이오메탄을 등엔트로피과정인 단열팽창을 통하여 $-155{\sim}-159^{\circ}C$의 초저온으로 냉각되는 질소냉매와 열교환기에서 열교환시켜 이루어졌으며 그 생산량은 $3.46m^3$/day(1bar, $-161^{\circ}C$)이었다.

  • PDF

부탄을 액화 연료로 사용한 냉가스 추진 시스템에 대한 연구 (Study of Cold Gas Propulsion System Utilizing Butane as Liquefied Propellant)

  • 강석진;권기범;조동현;이상현
    • 한국항공우주학회지
    • /
    • 제35권4호
    • /
    • pp.323-328
    • /
    • 2007
  • 소형 인공위성의 전형적인 추진 시스템인 냉가스 추진 시스템에 액화 연료를 직접 적용하여 성능을 분석하였다. 고려하는 액화 연료 냉가스 추진 시스템과 일반적으로 사용되는 질소 추진 시스템의 성능을 비교하였다. 질소 추진 시스템과 동일한 질량 조건, 동일한 부피 조건, 동일한 총 임펄스 조건에서 각각 액화 연료를 사용한 냉가스 시스템의 성능과 필요한 연료 탱크의 부피, 필요한 추진 시스템의 질량을 산출하였다. 액화 연료를 사용한 냉가스 추진 시스템은 일반적인 질소 추진제를 사용한 시스템보다 성능, 부피 및 질량 등에서 많은 이점을 가지며 냉가스 추진 시스템에 직접적으로 적용이 가능함을 알 수 있었다.

천연가스 액화용 이중 냉매 팽창 사이클 (Advanced Dual Refrigerant Expansion Cycle for LNG Liquefaction)

  • 김민기;김문규;이기환;김효빈;이동훈;민준호;김진모
    • 플랜트 저널
    • /
    • 제15권2호
    • /
    • pp.46-55
    • /
    • 2019
  • 기존 메탄 & 질소 팽창 사이클의 효율 개선을 위해 2개의 메탄 팽창 공정 (cold composite curve에 변곡점을 하나 더 추가하기 위해 warm & cold 2개 공정으로 나눔)과 1개의 질소 팽창 공정을 사용한 천연가스 액화 사이클을 소개하기 위한 논문이다. 이전 질소 팽창 사이클 및 메탄 & 질소 사이클과 비교했을 때, 13.92 및 13.13에서 12.08 kW/ton/day로 효율이 8~15% 정도 개선되었다. 순 현재가치(NPV) 기준으로 한 수명 주기 비용 분석(LCC analysis) 또한 약간의 CAPEX 증가는 있지만 프로젝트 순 현재가치가 개선된 결과를 보여준다.

LNG냉열이용 수소액화 공정해석 및 설계 (Design and Analysis for Hydrogen Liquefaction Process Using LNG Cold Energy)

  • 윤상국
    • 한국가스학회지
    • /
    • 제15권3호
    • /
    • pp.1-5
    • /
    • 2011
  • 수소액화 공정은 수소 예냉 에너지, 액화에너지 그리고 Ortho/Para 변환열 제거 등 다량의 에너지가 요구되어 진다. 본 논문은 기존의 수소액화 공정에 LNG냉열을 이용하여 에너지절약 효과를 얻고자 기본설계 및 열해석을 수행하였다. 액화 소요에너지에 LNG냉열을 적용하면 수소액화공정의 에너지절약효과와 함께, LNG기지의 해수에 버려지는 LNG냉열을 회수, 이용하는 일석이조의 에너지절약기술이 된다. 열해석에 의한 설계를 수행한 결과 현재의 액체질소 예냉식 수소액화 플랜트의 소요에너지에 비하여 LNG냉열을 이용할 경우 소요동력량은 75%가 절감되었다. 이는 예냉을 액체질소 대신에 냉열을 사용하기 때문이다. 또한 LNG냉열량은 수소액화량 1T/D기준할 때 15T/D 유량이 요구되었다.

초저온액화가스 저장탱크 내에서의 액화질소의 거동 (Behavior of Liquid Nitrogen in the Cryogenic Storage Tank)

  • 박병휘;이현철;박두선;손무룡
    • 한국가스학회지
    • /
    • 제2권3호
    • /
    • pp.37-48
    • /
    • 1998
  • 밀폐된 초저온액화가스 저장탱크에 액화질소의 충전량을 바꾸어 가면서 시간이 경과함에 따른 탱크 내부의 여러 가지 변화에 대해 조사하였다. 탱크 내부의 압력, 온도, 액체와 기체의 비율 등의 변화는 충전된 액체의 양에 의존한다. 탱크에 충전된 액체의 양에 따라 (1)액면이 높아지면서 액화를 동반하기도 하고, (2)액면이 높아짐에도 불구하고 초기에는 액체의 기화가 일어나다가 압력이 높아지면 다시 액화가 일어나기도 하며, (3)액면은 일정하게 유지되지만 액체의 기화가 일어나기도 하며, (4)액면이 낮아짐과 동시에 액체의 기화가 일어나는 등 다양한 변화를 나타내었다. 탱크에 액체를 가득 채우면 압력이 급상승하여 매우 위험하므로 안전수칙에 따라 $90\%$ 이하 충전해야한다. 탱크가 완전히 밀폐되어 있을 경우, 탱크를 액체로 가득 채우면 불과 5일만에 80bar의 압력상승을 가져오지만, $90\%$ 충전하면 5일 동안에 겨우 1.5bar의 압력상승이 일어난다. 그러나 어느 경우이건 액체를 충전한 채 탱크를 완전히 밀폐시킨 뒤 장기간 방치하는 것은 대단히 위험하다.

  • PDF

사각 기둥 실린더 내부 다공성 매질에서의 액화질소의 거동에 대한 연구 (Study on Flow behavior of Liquid Nitrogen for Porous Media in Square-section Cylinder)

  • 최성웅;이우일
    • 한국가스학회지
    • /
    • 제17권1호
    • /
    • pp.26-34
    • /
    • 2013
  • 상 변화(phase change)를 수반한 다상 유동 연구(multiphase flow analysis)는 증발, 응축과 같은 많은 분야에 적용, 응용될 수 있고 현상의 복잡성 때문에 많은 연구의 관심을 받고 있는 분야이다. 본 연구에서는 극저온 유체인 액화질소가 다양한 밀도의 글라스 울 내부 다공성 매질속으로 스며들면서 나타나는 거동을 살펴보았다. 유동에 영향을 미치는 투과성 계수에 대해서, 외부 압력의 영향성에 대한 실험을 진행하였고 논의하였다. 극저온 유체인 액화질소를 실험유체로 사용하여 사각 기둥 실린더 내부의 유체의 유동에 대한 실험으로 유체의 유동을 살펴보았다. 그 결과 벌크 밀도가 커짐에 따라 투과성 계수가 작아지고, 거리에 따른 압력변화의 비선형성이 커짐을 보였다. 마지막으로 CFD 전산유동 프로그램으로 실험결과와 동일한 상황을 모사하였으며, 이를 실험결과와 비교 분석하였다. 이에 대한 검증결과, 시뮬레이션 결과가 실험결과와 유사한 경향과 결과를 보여주었다.

LNG-FPSO(Liquefied Natural Gas-Floating Production Storage and Offloading)용 질소 팽창 사이클의 효율 개선에 대한 연구 (Investigation on Efficiency Improvement of the Nitrogen Expander Cycle : Natural Gas Liquefaction Process for LNG-FPSO)

  • 백승환;정상권;김선영
    • 설비공학논문집
    • /
    • 제22권7호
    • /
    • pp.442-447
    • /
    • 2010
  • FPSO (Floating Production Strorage and Offloading) method for LNG industry is efficient and facile compared to onshore NG (Natural Gas) treatment facility. Five simple natural gas liquefaction cycles for FPSO are presented and simulated in this paper. SMR (Single Mixed Refrigerant) cycle, SNE (Single Nitrogen Expander) cycle, DNE (Double Nitrogen Expander) cycle, PNE (Precooled Nitrogen Expander) cycle, and PDNE (Precooled Double Nitrogen Expander) cycle are compared. Simple analysis results in this paper show that precooling process and adding an expander in the liquefaction cycle is an effective way to increase liquefaction efficiency.

선박용 액화천연가스 기화기의 열전달 특성의 수치해석 (Numerical analysis of LNG vaporizer heat transfer characteristic in LNG fuel ship)

  • 이대철;한드리;정한식;정효민
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권1호
    • /
    • pp.22-28
    • /
    • 2013
  • 본 논문은 액화 천연 가스(LNG)를 주 연료로 사용하는 선박용의 LNG기화기의 특성을 조사하기 위하여 기화기 내부에서의 열전달 특성을 연구하였다. LNG를 기화하기 위한 가열열원으로서는 주 엔진에서 발생하는 워터 쟈켓의 가온수를 직접 이용하지 않고 열교환기를 통하여 간접 가열된 글리콜 워터(Glycol Water)를 사용하는 시스템을 채택하였다. LNG의 기화 과정은 상변화를 동반하기 때문에 이를 검증하기 위하여 액화질소(LN2)의 기화과정을 통하여 신뢰성을 확보하였고, LNG 기화기 내부의 최적 열적특성을 도출하기 위하여 LNG의 유입량과 가열열원인 글리콜 워터 유량변화에 대한 LNG 기화특성을 연구하였다. 해석 결과 LNG 질량유량이 0.111 kg/s과 가열원수인 부동액 질량유량이 1.805 kg/s일 경우 가스 출구 온도는 약 $6^{\circ}C$로서 LNG 선박의 최적 운전 조건임을 알 수 있었다.